These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21693915)

  • 1. Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory.
    Lee HL; Chang WJ
    J Phys Condens Matter; 2009 Mar; 21(11):115302. PubMed ID: 21693915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on 'Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory'.
    Tounsi A; Heireche H; Benzair A; Mechab I
    J Phys Condens Matter; 2009 Nov; 21(44):448001. PubMed ID: 21832479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The frequency of cantilevered double-wall carbon nanotube resonators as a function of outer wall length.
    Kang JW; Choi YG; Kim Y; Jiang Q; Kwon OK; Hwang HJ
    J Phys Condens Matter; 2009 Sep; 21(38):385301. PubMed ID: 21832365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nonlocal shell model for mode transformation in single-walled carbon nanotubes.
    Shi MX; Li QM; Huang Y
    J Phys Condens Matter; 2009 Nov; 21(45):455301. PubMed ID: 21694006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free vibration analysis of DWCNTs using CDM and Rayleigh-Schmidt based on Nonlocal Euler-Bernoulli beam theory.
    De Rosa MA; Lippiello M
    ScientificWorldJournal; 2014; 2014():194529. PubMed ID: 24715807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibration Analysis of Fluid Conveying Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory by Spectral Element Method.
    Yi X; Li B; Wang Z
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31847397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading.
    Heireche H; Tounsi A; Benzair A
    Nanotechnology; 2008 May; 19(18):185703. PubMed ID: 21825699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The intermediate frequency modes of single- and double-walled carbon nanotubes: a Raman spectroscopic and in situ Raman spectroelectrochemical study.
    Kalbac M; Kavan L; Zukalová M; Dunsch L
    Chemistry; 2006 May; 12(16):4451-7. PubMed ID: 16552794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes.
    Zhang YY; Wang CM; Duan WH; Xiang Y; Zong Z
    Nanotechnology; 2009 Sep; 20(39):395707. PubMed ID: 19724103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluttering and divergence instability of functionally graded viscoelastic nanotubes conveying fluid based on nonlocal strain gradient theory.
    Nematollahi MS; Mohammadi H; Taghvaei S
    Chaos; 2019 Mar; 29(3):033108. PubMed ID: 30927831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective and Scalable Chemical Removal of Thin Single-Walled Carbon Nanotubes from their Mixtures with Double-Walled Carbon Nanotubes.
    Komínková Z; Valeš V; Kalbáč M
    Chemistry; 2015 Nov; 21(45):16147-53. PubMed ID: 26358882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear Vibration of Double-Walled Carbon Nanotubes Subjected to Mechanical Impact and Embedded on Winkler-Pasternak Foundation.
    Herisanu N; Marinca B; Marinca V
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radial breathing mode of carbon nanotubes subjected to axial pressure.
    Lei XW; Ni QQ; Shi JX; Natsuki T
    Nanoscale Res Lett; 2011 Aug; 6(1):492. PubMed ID: 21834961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids.
    Wang J; Chu H; Li Y
    ACS Nano; 2008 Dec; 2(12):2540-6. PubMed ID: 19206290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlocal continuum model and molecular dynamics for free vibration of single-walled carbon nanotubes.
    Hu YG; Liew KM; Wang Q
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10401-7. PubMed ID: 22408916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-wall carbon nanotube-porphyrin supramolecular hybrid: synthesis and photophysical studies.
    Vizuete M; Gómez-Escalonilla MJ; Fierro JL; Atienzar P; García H; Langa F
    Chemphyschem; 2014 Jan; 15(1):100-8. PubMed ID: 24265140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ Raman spectroelectrochemical study of 13C-labeled fullerene peapods and carbon nanotubes.
    Kalbác M; Kavan L; Zukalová M; Dunsch L
    Small; 2007 Oct; 3(10):1746-52. PubMed ID: 17853497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory.
    Li XF; Tang GJ; Shen ZB; Lee KY
    Ultrasonics; 2015 Jan; 55():75-84. PubMed ID: 25149195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate modeling of buckling of single- and double-walled carbon nanotubes based on shell theories.
    Kulathunga DD; Ang KK; Reddy JN
    J Phys Condens Matter; 2009 Oct; 21(43):435301. PubMed ID: 21832433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory.
    Eshraghi I; Jalali SK; Pugno NM
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.