BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21694140)

  • 1. Two-dimensional pattern reverse Monte Carlo method for modelling the structures of nano-particles in uniaxial elongated rubbers.
    Hagita K; Arai T; Kishimoto H; Umesaki N; Shinohara Y; Amemiya Y
    J Phys Condens Matter; 2007 Aug; 19(33):335217. PubMed ID: 21694140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First example of multi-scale reverse Monte Carlo modeling for small-angle scattering experimental data using reverse mapping from coarse-grained particles to atoms.
    Hagita K; McGreevy RL; Arai T; Inui M; Matsuda K; Tamura K
    J Phys Condens Matter; 2010 Oct; 22(40):404215. PubMed ID: 21386576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of polymer-silica nanocomposite particles with core-shell morphologies using Monte Carlo simulations and small angle X-ray scattering.
    Balmer JA; Mykhaylyk OO; Schmid A; Armes SP; Fairclough JP; Ryan AJ
    Langmuir; 2011 Jul; 27(13):8075-89. PubMed ID: 21661736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RMCSANS--modelling the inter-particle term of small angle scattering data via the reverse Monte Carlo method.
    Gereben O; Pusztai L; McGreevy RL
    J Phys Condens Matter; 2010 Oct; 22(40):404216. PubMed ID: 21386577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The First Eighteen Years of Reverse Monte Carlo Modelling, a workshop held in Budapest, Hungary (28-30th September 2006).
    Keen DA; Pusztai L
    J Phys Condens Matter; 2007 Aug; 19(33):330301. PubMed ID: 21694123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle-mesh two-dimensional pattern reverse Monte Carlo analysis on filled-gels during uniaxial expansion.
    Hagita K
    Soft Matter; 2019 Sep; 15(36):7237-7249. PubMed ID: 31478543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topological validation of morphology modeling by extended reverse Monte Carlo analysis.
    Hagita K; Teramoto T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056704. PubMed ID: 18643192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure factors of dispersible units of carbon black filler in rubbers.
    Koga T; Takenaka M; Aizawa K; Nakamura M; Hashimoto T
    Langmuir; 2005 Nov; 21(24):11409-13. PubMed ID: 16285818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rupture and regeneration of colloidal crystals as studied by two-dimensional ultra-small-angle X-ray scattering.
    Konishi T; Ise N
    Langmuir; 2006 Nov; 22(24):9843-5. PubMed ID: 17106971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medium-range correlation of Ag ions in superionic melts of Ag2Se and AgI by reverse Monte Carlo structural modelling-connectivity and void distribution.
    Tahara S; Ueno H; Ohara K; Kawakita Y; Kohara S; Ohno S; Takeda S
    J Phys Condens Matter; 2011 Jun; 23(23):235102. PubMed ID: 21613697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse Monte Carlo modeling of amorphous structures in phase-change In0.21Sb0.79 thin film.
    Arai T; Tani K; McGreevy RL
    J Phys Condens Matter; 2010 Oct; 22(40):404204. PubMed ID: 21386565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2D pair distribution function analysis of anisotropic small-angle scattering patterns from elongated nano-composite hydrogels.
    Nishi K; Shibayama M
    Soft Matter; 2017 May; 13(17):3076-3083. PubMed ID: 28247881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse Monte Carlo simulations, Raman scattering, and thermal studies of an amorphous Ge30Se70 alloy produced by mechanical alloying.
    Machado KD; de Lima JC; Campos CE; Grandi TA; Pizani PS
    J Chem Phys; 2004 Jan; 120(1):329-36. PubMed ID: 15267293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved in situ small-angle X-ray scattering study of silica particle formation in nonionic water-in-oil microemulsions.
    Riello P; Mattiazzi M; Pedersen JS; Benedetti A
    Langmuir; 2008 May; 24(10):5225-8. PubMed ID: 18429625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extension of the invariant environment refinement technique + reverse Monte Carlo method of structural modelling for interpreting experimental structure factors: the cases of amorphous silicon, phosphorus, and liquid argon.
    Gereben O; Pusztai L
    J Chem Phys; 2011 Aug; 135(8):084111. PubMed ID: 21895163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nature of intermediate-range order in Ge-As-S glasses: results from reverse Monte Carlo modeling.
    Soyer-Uzun S; Benmore CJ; Siewenie JE; Sen S
    J Phys Condens Matter; 2010 Mar; 22(11):115404. PubMed ID: 21389466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling.
    Temleitner L; Pusztai L; Schweika W
    J Phys Condens Matter; 2007 Aug; 19(33):335207. PubMed ID: 21694130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SpecSwap-RMC: a novel reverse Monte Carlo approach using a discrete set of local configurations and pre-computed properties.
    Leetmaa M; Wikfeldt KT; Pettersson LG
    J Phys Condens Matter; 2010 Apr; 22(13):135001. PubMed ID: 21389504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo-based rigid body modelling of large protein complexes against small angle scattering data.
    Meesters C; Pairet B; Rabenhorst A; Decker H; Jaenicke E
    Comput Biol Chem; 2010 Jun; 34(3):158-64. PubMed ID: 20598639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of mass fractal dimension and cluster size of silica in styrene butadiene rubber composites.
    Schneider GJ; Vollnhals V; Brandt K; Roth SV; Göritz D
    J Chem Phys; 2010 Sep; 133(9):094902. PubMed ID: 20831333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.