These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21694140)

  • 21. Two-dimensional Raman correlation spectroscopy study of an emulsion copolymerization reaction process.
    Noda I; Allen WM; Lindberg SE
    Appl Spectrosc; 2009 Feb; 63(2):224-32. PubMed ID: 19215653
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling the atomic structure of an amorphous NiZr(3) alloy by anomalous wide angle x-ray scattering and reverse Monte Carlo simulation.
    de Lima JC; Raoux D; Charriere Y; Maurer M
    J Phys Condens Matter; 2008 Mar; 20(11):115103. PubMed ID: 21694217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A microscopic look at the reinforcement of silica-filled rubbers.
    Botti A; Pyckhout-Hintzen W; Richter D; Urban V; Straube E
    J Chem Phys; 2006 May; 124(17):174908. PubMed ID: 16689605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of rod-like ferromagnetic particles in the absence of an applied magnetic field.
    Aoshima M; Satoh A
    J Colloid Interface Sci; 2006 Jan; 293(1):77-87. PubMed ID: 16038920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Possibility of reverse Monte Carlo modelling for hydrogenated amorphous Si deposited on reactive ion etched Si substrate.
    Kawahara T; Matsui Y; Tagawa S; Kawai T; Matsumura H
    J Phys Condens Matter; 2007 Aug; 19(33):335211. PubMed ID: 21694134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strain induced anisotropies in silica polydimethylsiloxane composites.
    Schneider GJ; Göritz D
    J Chem Phys; 2010 Jul; 133(2):024903. PubMed ID: 20632772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular modeling of porous carbons using the hybrid reverse Monte Carlo method.
    Jain SK; Pellenq RJ; Pikunic JP; Gubbins KE
    Langmuir; 2006 Nov; 22(24):9942-8. PubMed ID: 17106983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomic structure of As(25)Si(40)Te(35) glass.
    Kaban I; Gruner S; Jóvári P; Kehr M; Hoyer W; Delaplane RG; Popescu M
    J Phys Condens Matter; 2007 Aug; 19(33):335210. PubMed ID: 21694133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The structure of the muscle protein complex 4Ca2+.troponin C.troponin I. Monte Carlo modeling analysis of small-angle X-ray data.
    Olah GA; Trewhella J
    Basic Life Sci; 1996; 64():137-47. PubMed ID: 9031509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reverse Monte Carlo modeling in confined systems.
    Sánchez-Gil V; Noya EG; Lomba E
    J Chem Phys; 2014 Jan; 140(2):024504. PubMed ID: 24437893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Milk gelation studied with small angle neutron scattering techniques and Monte Carlo simulations.
    van Heijkamp LF; de Schepper IM; Strobl M; Tromp RH; Heringa JR; Bouwman WG
    J Phys Chem A; 2010 Feb; 114(7):2412-26. PubMed ID: 20121284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Confined binary two-dimensional colloidal crystals: Monte Carlo simulation of crack formation.
    Medina S; Virnau P; Binder K
    J Phys Condens Matter; 2011 Jan; 23(3):035105. PubMed ID: 21406860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short- and long-range order in the positive electrode material, Li(NiMn)0.5O2: a joint X-ray and neutron diffraction, pair distribution function analysis and NMR study.
    Bréger J; Dupré N; Chupas PJ; Lee PL; Proffen T; Parise JB; Grey CP
    J Am Chem Soc; 2005 May; 127(20):7529-37. PubMed ID: 15898804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The structure of calcium metaphosphate glass obtained from x-ray and neutron diffraction and reverse Monte Carlo modelling.
    Wetherall KM; Pickup DM; Newport RJ; Mountjoy G
    J Phys Condens Matter; 2009 Jan; 21(3):035109. PubMed ID: 21817268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-dimensional Monte Carlo simulations of a polydisperse colloidal dispersion composed of ferromagnetic particles for the case of no external magnetic field.
    Aoshima M; Satoh A
    J Colloid Interface Sci; 2004 Dec; 280(1):83-90. PubMed ID: 15476777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-space modeling for complex structures based on small-angle X-ray scattering.
    Omote K; Iwata T
    J Appl Crystallogr; 2021 Oct; 54(Pt 5):1290-1297. PubMed ID: 34667444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reverse Monte Carlo refinements of local displacive order in perovskites: AgNbO3 case study.
    Krayzman V; Levin I
    J Phys Condens Matter; 2010 Oct; 22(40):404201. PubMed ID: 21386562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nuclear magnetic resonance structure of d(GCATATGATAG). d(CTATCATATGC): a consensus sequence for promoters recognized by sigma K RNA polymerase.
    Tonelli M; Ragg E; Bianucci AM; Lesiak K; James TL
    Biochemistry; 1998 Aug; 37(34):11745-61. PubMed ID: 9718297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diffuse scattering and ordering in the short-range modulated paraelectric phase of sodium nitrite, NaNO2.
    Łukaszewicz K; Pietraszko A; Kucharska M
    Acta Crystallogr B; 2005 Oct; 61(Pt 5):473-80. PubMed ID: 16186646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural changes in precipitated silica induced by external forces.
    Schneider GJ; Göritz D
    J Chem Phys; 2010 Apr; 132(15):154903. PubMed ID: 20423197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.