These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 2169415)
1. Evaluation of the buffer capacity and permeability constant for protons in chromatophores from Rhodobacter capsulatus. Turina MP; Venturoli G; Melandri BA Eur J Biochem; 1990 Aug; 192(1):39-47. PubMed ID: 2169415 [TBL] [Abstract][Full Text] [Related]
2. On the determination of the transmembrane pH difference in bacterial chromatophores using 9-aminoacridine. Casadio R; Baccarini-Melandri A; Melandri BA Eur J Biochem; 1974 Aug; 47(1):121-8. PubMed ID: 4434984 [No Abstract] [Full Text] [Related]
3. Electrical potential changes, H+ translocation and phosphorylation induced by short flash excitation in Rhodopseudomonas sphaeroides chromatophores. Saphon S; Jackson JB; Witt HT Biochim Biophys Acta; 1975 Oct; 408(1):67-82. PubMed ID: 240444 [TBL] [Abstract][Full Text] [Related]
4. Measurement of chloroplast internal protons with 9-aminoacridine. Probe binding, dark proton gradient, and salt effects. Haraux F; de Kouchkovsky Y Biochim Biophys Acta; 1980 Aug; 592(1):153-68. PubMed ID: 6249352 [TBL] [Abstract][Full Text] [Related]
5. The coupling between protonmotive force and the NAD(P)+ transhydrogenase in chromatophores from photosynthetic bacteria. Cotton NP; Lever TM; Nore BF; Jones MR; Jackson JB Eur J Biochem; 1989 Jul; 182(3):593-603. PubMed ID: 2546762 [TBL] [Abstract][Full Text] [Related]
6. P+QA- and P+QB- charge recombinations in Rhodopseudomonas viridis chromatophores and in reaction centers reconstituted in phosphatidylcholine liposomes. Existence of two conformational states of the reaction centers and effects of pH and o-phenanthroline. Baciou L; Rivas E; Sebban P Biochemistry; 1990 Mar; 29(12):2966-76. PubMed ID: 2186805 [TBL] [Abstract][Full Text] [Related]
7. Electron and proton transfer on the acceptor side of the reaction center in chromatophores of Rhodobacter capsulatus: evidence for direct protonation of the semiquinone state of QB. Lavergne J; Matthews C; Ginet N Biochemistry; 1999 Apr; 38(14):4542-52. PubMed ID: 10194376 [TBL] [Abstract][Full Text] [Related]
8. Calibration and time resolution of lumenal pH-transients in chromatophores of Rhodobacter capsulatus following a single turnover flash of light: proton release by the cytochrome bc1-complex is strongly electrogenic. Mulkidjanian AY; Junge W FEBS Lett; 1994 Oct; 353(2):189-93. PubMed ID: 7926049 [TBL] [Abstract][Full Text] [Related]
9. The ratio of protons translocated/hydride ion equivalent transferred by nicotinamide nucleotide transhydrogenase in chromatophores from Rhodospirillum rubrum. Bizouarn T; Jackson JB Eur J Biochem; 1993 Oct; 217(2):763-70. PubMed ID: 8223619 [TBL] [Abstract][Full Text] [Related]
12. Coupling of proton flow to ATP synthesis in Rhodobacter capsulatus: F(0)F(1)-ATP synthase is absent from about half of chromatophores. Feniouk BA; Cherepanov DA; Junge W; Mulkidjanian AY Biochim Biophys Acta; 2001 Nov; 1506(3):189-203. PubMed ID: 11779552 [TBL] [Abstract][Full Text] [Related]
13. Chromatophore vesicles of Rhodobacter capsulatus contain on average one F(O)F(1)-ATP synthase each. Feniouk BA; Cherepanov DA; Voskoboynikova NE; Mulkidjanian AY; Junge W Biophys J; 2002 Mar; 82(3):1115-22. PubMed ID: 11867431 [TBL] [Abstract][Full Text] [Related]
14. Calibration of the response of 9-amino acridine fluorescence to transmembrane pH differences in bacterial chromatophores. Casadio R; Melandri BA Arch Biochem Biophys; 1985 Apr; 238(1):219-28. PubMed ID: 3872628 [TBL] [Abstract][Full Text] [Related]
15. The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients. Wrigglesworth JM; Cooper CE; Sharpe MA; Nicholls P Biochem J; 1990 Aug; 270(1):109-18. PubMed ID: 2168698 [TBL] [Abstract][Full Text] [Related]
16. The relationship between delayed fluorescence and the carotenoid shift in chromatophores from Rhodopseudomonas capsulata. Evans EH; Crofts AR Biochim Biophys Acta; 1974 Jan; 333(1):44-51. PubMed ID: 19396992 [TBL] [Abstract][Full Text] [Related]
17. Unreliability of carotenoid electrochromism for the measure of electrical potential differences induced by ATP hydrolysis in bacterial chromatophores. Crimi M; Fregni V; Altimari A; Melandri BA FEBS Lett; 1995 Jun; 367(2):167-72. PubMed ID: 7796913 [TBL] [Abstract][Full Text] [Related]
18. Measurement of transmembrane potentials in Rhodospirillum rubrum chromatophores with an oxacarbocyanine dye. Pick U; Avron M Biochim Biophys Acta; 1976 Jul; 440(1):189-204. PubMed ID: 820380 [TBL] [Abstract][Full Text] [Related]
19. Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach. Verméglio A; Lavergne J; Rappaport F Photosynth Res; 2016 Jan; 127(1):13-24. PubMed ID: 25512104 [TBL] [Abstract][Full Text] [Related]