These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 21694198)
1. Unidirectional solidification of binary melts from a cooled boundary: analytical solutions of a nonlinear diffusion-limited problem. Alexandrov DV; Nizovtseva IG; Malygin AP; Huang HN; Lee D J Phys Condens Matter; 2008 Mar; 20(11):114105. PubMed ID: 21694198 [TBL] [Abstract][Full Text] [Related]
2. Nonlinear dynamics of mushy layers induced by external stochastic fluctuations. Alexandrov DV; Bashkirtseva IA; Ryashko LB Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311213 [TBL] [Abstract][Full Text] [Related]
3. Solidification of ternary melts with a two-phase layer. Toropova LV; Ivanov AA; Osipov SI; Yang Y; Makoveeva EV; Alexandrov DV J Phys Condens Matter; 2022 Jul; 34(38):. PubMed ID: 35820411 [TBL] [Abstract][Full Text] [Related]
4. The effect of density changes on crystallization with a mushy layer. Nizovtseva IG; Alexandrov DV Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190248. PubMed ID: 32279628 [TBL] [Abstract][Full Text] [Related]
5. Analytical solution of a binary melt solidification model in the presence of a quasi-equilibrium mushy region for the case of the non-linear phase diagram. Nizovtseva IG; Starodumov IO; Alexandrov DV J Phys Condens Matter; 2020 Jul; 32(30):304003. PubMed ID: 32213674 [TBL] [Abstract][Full Text] [Related]
6. XRD investigation of binary alloy solidification. Montanari R; Gauzzi F Ann N Y Acad Sci; 2009 Apr; 1161():407-15. PubMed ID: 19426334 [TBL] [Abstract][Full Text] [Related]
7. Refined energy-conserving dissipative particle dynamics model with temperature-dependent properties and its application in solidification problem. Ng KC; Sheu TWH Phys Rev E; 2017 Oct; 96(4-1):043302. PubMed ID: 29347538 [TBL] [Abstract][Full Text] [Related]
8. Analytical solutions of mushy layer equations describing directional solidification in the presence of nucleation. Alexandrov DV; Ivanov AA; Alexandrova IV Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311214 [TBL] [Abstract][Full Text] [Related]
9. Modeling of drug release from matrix systems involving moving boundaries: approximate analytical solutions. Lee PI Int J Pharm; 2011 Oct; 418(1):18-27. PubMed ID: 21251957 [TBL] [Abstract][Full Text] [Related]
10. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion. Ramirez JC; Beckermann C; Karma A; Diepers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051607. PubMed ID: 15244829 [TBL] [Abstract][Full Text] [Related]
11. Solute trapping and diffusionless solidification in a binary system. Galenko P Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031606. PubMed ID: 17930255 [TBL] [Abstract][Full Text] [Related]
12. Analytical solutions for anisotropic time-dependent heat equations with Robin boundary condition for cubic-shaped solid-state laser crystals. Sabaeian M Appl Opt; 2012 Oct; 51(30):7150-9. PubMed ID: 23089765 [TBL] [Abstract][Full Text] [Related]
13. [Theoretical analysis of the membrane transport non-homogeneous non-electrolyte solutions: influence of thermodynamic forces on thickness of concentration boundary layers for binary solutions]. Slezak A; Grzegorczyn S Polim Med; 2007; 37(2):67-79. PubMed ID: 17957950 [TBL] [Abstract][Full Text] [Related]
14. The role of incoming flow on crystallization of undercooled liquids with a two-phase layer. Alexandrov DV; Toropova LV Sci Rep; 2022 Oct; 12(1):17857. PubMed ID: 36284156 [TBL] [Abstract][Full Text] [Related]
15. Effects of nonlinear interfacial kinetics and interfacial thermal resistance in planar solidification. Palmieri B; Ward CA; Dejmek M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051605. PubMed ID: 23214791 [TBL] [Abstract][Full Text] [Related]
16. [Membrane transport of non-homogeneous non-electrolyte solutions: on role of volume flows in creation of concentration boundary layers in binary solutions]. Slezak A Polim Med; 2006; 36(4):37-42. PubMed ID: 17402231 [TBL] [Abstract][Full Text] [Related]
17. Phase-field modeling of solute precipitation and dissolution. Xu Z; Meakin P J Chem Phys; 2008 Jul; 129(1):014705. PubMed ID: 18624494 [TBL] [Abstract][Full Text] [Related]
18. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
19. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates. Santos MV; Sansinena M; Zaritzky N; Chirife J Cryo Letters; 2012; 33(1):31-40. PubMed ID: 22434120 [TBL] [Abstract][Full Text] [Related]
20. Phase-field model of solid-liquid phase transition with density difference and latent heat in velocity and elastic fields. Takae K; Onuki A Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041504. PubMed ID: 21599166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]