These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 21694256)

  • 61. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Top-down approaches to the formation of silica nanoparticle patterns.
    Xia D; Li D; Ku Z; Luo Y; Brueck SR
    Langmuir; 2007 May; 23(10):5377-85. PubMed ID: 17425349
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Langmuir-Blodgettry of nanocrystals and nanowires.
    Tao AR; Huang J; Yang P
    Acc Chem Res; 2008 Dec; 41(12):1662-73. PubMed ID: 18683954
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Changing the magnetic properties of microstructure by directing the self-assembly of superparamagnetic nanoparticles.
    Ghosh S; Puri IK
    Faraday Discuss; 2015; 181():423-35. PubMed ID: 25941973
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Self-assembly of nanoparticles into structured spherical and network aggregates.
    Boal AK; Ilhan F; DeRouchey JE; Thurn-Albrecht T; Russell TP; Rotello VM
    Nature; 2000 Apr; 404(6779):746-8. PubMed ID: 10783884
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fast, high-throughput creation of size-tunable micro/nanoparticle clusters via evaporative self-assembly in picoliter-scale droplets of particle suspension.
    Choi S; Jamshidi A; Seok TJ; Wu MC; Zohdi TI; Pisano AP
    Langmuir; 2012 Feb; 28(6):3102-11. PubMed ID: 22260193
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Formation of a polymer particle monolayer by continuous self-assembly from a colloidal solution.
    Kim S; Choi HD; Kim ID; Lee JC; Rhee BK; Lim JA; Hong JM
    J Colloid Interface Sci; 2012 Feb; 368(1):9-13. PubMed ID: 22169181
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Field induced rotational viscosity of ferrofluid: effect of capillary size and magnetic field direction.
    Andhariya N; Chudasama B; Patel R; Upadhyay RV; Mehta RV
    J Colloid Interface Sci; 2008 Jul; 323(1):153-7. PubMed ID: 18452937
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography.
    Wang W; Timonen JVI; Carlson A; Drotlef DM; Zhang CT; Kolle S; Grinthal A; Wong TS; Hatton B; Kang SH; Kennedy S; Chi J; Blough RT; Sitti M; Mahadevan L; Aizenberg J
    Nature; 2018 Jul; 559(7712):77-82. PubMed ID: 29942075
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Magnetic field dependent ordering in ferrofluids at SiO2 interfaces.
    Vorobiev A; Major J; Dosch H; Gordeev G; Orlova D
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):267203. PubMed ID: 15698017
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Tunable assembly of colloidal crystal alloys using magnetic nanoparticle fluids.
    Yang Y; Gao L; Lopez GP; Yellen BB
    ACS Nano; 2013 Mar; 7(3):2705-16. PubMed ID: 23373586
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Magnetic nanoparticle assembly arrays prepared by hierarchical self-assembly on a patterned surface.
    Wen T; Zhang D; Wen Q; Zhang H; Liao Y; Li Q; Yang Q; Bai F; Zhong Z
    Nanoscale; 2015 Mar; 7(11):4906-11. PubMed ID: 25712606
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Towards ferrofluidics for μ-TAS and lab on-a-chip applications.
    Mao L; Koser H
    Nanotechnology; 2006 Feb; 17(4):S34-47. PubMed ID: 21727352
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Chain aggregate structure and magnetic birefringence in polydisperse ferrofluids.
    Ivanov AO; Kantorovich SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021401. PubMed ID: 15447485
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Shape-Reconfigurable Ferrofluids.
    Zhao S; Zhang JY; Fu Y; Zhu S; Shum HC; Liu X; Wang Z; Ye R; Tang BZ; Russell TP; Chai Y
    Nano Lett; 2022 Jul; 22(13):5538-5543. PubMed ID: 35766622
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Adhesion phenomena in ferrofluids.
    Miranda JA; Oliveira RM; Jackson DP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036311. PubMed ID: 15524637
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives.
    Oehlsen O; Cervantes-Ramírez SI; Cervantes-Avilés P; Medina-Velo IA
    ACS Omega; 2022 Feb; 7(4):3134-3150. PubMed ID: 35128226
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Triggered self-assembly of magnetic nanoparticles.
    Ye L; Pearson T; Cordeau Y; Mefford OT; Crawford TM
    Sci Rep; 2016 Mar; 6():23145. PubMed ID: 26975332
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Frequency-dependent conversion of the torque of a rotating magnetic field on a ferrofluid confined in a spherical cavity.
    Usadel KD; Storozhenko A; Arefyev I; Nádasi H; Trittel T; Stannarius R; Veit P; Eremin A
    Soft Matter; 2019 Nov; 15(44):9018-9030. PubMed ID: 31675052
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Enhanced diffusion and magnetophoresis of paramagnetic colloidal particles in rotating magnetic fields.
    Sherman ZM; Pallone JL; Erb RM; Swan JW
    Soft Matter; 2019 Aug; 15(33):6677-6689. PubMed ID: 31397836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.