These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21694261)

  • 1. Oscillatory squeeze flow of suspensions of magnetic polymerized chains.
    Kuzhir P; López-López MT; Vertelov G; Pradille Ch; Bossis G
    J Phys Condens Matter; 2008 May; 20(20):204132. PubMed ID: 21694261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological Properties and Stabilization of Magnetorheological Fluids in a Water-in-Oil Emulsion.
    Park JH; Chin BD; Park OO
    J Colloid Interface Sci; 2001 Aug; 240(1):349-354. PubMed ID: 11446818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic rheology of sphere- and rod-based magnetorheological fluids.
    de Vicente J; Segovia-Gutiérrez JP; Andablo-Reyes E; Vereda F; Hidalgo-Alvarez R
    J Chem Phys; 2009 Nov; 131(19):194902. PubMed ID: 19929071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetoviscosity of dilute suspensions of magnetic ellipsoids obtained through rotational Brownian dynamics simulations.
    Sánchez JH; Rinaldi C
    J Colloid Interface Sci; 2009 Mar; 331(2):500-6. PubMed ID: 19100560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological properties of magnetic suspensions.
    Zubarev A; Iskakova L
    J Phys Condens Matter; 2008 May; 20(20):204138. PubMed ID: 21694267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical properties of dilute hematite/silicone oil suspensions under low electric fields.
    Espin MJ; Delgado AV; Durán JD
    J Colloid Interface Sci; 2005 Jul; 287(1):351-9. PubMed ID: 15914184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the magnetorheological response of aqueous magnetite suspensions stabilized by acrylic acid polymers.
    Viota JL; Delgado AV; Arias JL; Durán JD
    J Colloid Interface Sci; 2008 Aug; 324(1-2):199-204. PubMed ID: 18533174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloids on the frontier of ferrofluids. Rheological properties.
    López-López MT; Gómez-Ramírez A; Rodríguez-Arco L; Durán JD; Iskakova L; Zubarev A
    Langmuir; 2012 Apr; 28(15):6232-45. PubMed ID: 22432510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative electrorheological behavior in suspensions of inorganic particles.
    Ramos-Tejada MM; Arroyo FJ; Delgado AV
    Langmuir; 2010 Nov; 26(22):16833-40. PubMed ID: 20939556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelasticity of smart fluids based on wormlike surfactant micelles and oppositely charged magnetic particles.
    Pletneva VA; Molchanov VS; Philippova OE
    Langmuir; 2015 Jan; 31(1):110-9. PubMed ID: 25524531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse magnetorheological fluids.
    Rodríguez-Arco L; López-López MT; Zubarev AY; Gdula K; Durán JD
    Soft Matter; 2014 Sep; 10(33):6256-65. PubMed ID: 25022363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yield Stress of Concentrated Zirconia Suspensions: Correlation with Particle Interactions.
    Megías-Alguacil D; Durán JD; Delgado AV
    J Colloid Interface Sci; 2000 Nov; 231(1):74-83. PubMed ID: 11082250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral aggregation induced by magnetic perturbations in a magnetorheological fluid based on non-Brownian particles.
    Moctezuma RE; Donado F; Arauz-Lara JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032305. PubMed ID: 24125266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of microstructure formation of suspended particles in magnetorheological fluids.
    Ido Y; Inagaki T; Yamaguchi T
    J Phys Condens Matter; 2010 Aug; 22(32):324103. PubMed ID: 21386479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Static yield stress of a magnetorheological fluid containing Pickering emulsion polymerized Fe2O3/polystyrene composite particles.
    Seo YP; Kwak S; Choi HJ; Seo Y
    J Colloid Interface Sci; 2016 Feb; 463():272-8. PubMed ID: 26550785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A slender-body micromechanical model for viscoelasticity of magnetic colloids: comparison with preliminary experimental data.
    de Vicente J; López-López MT; Durán JD; Bossis G
    J Colloid Interface Sci; 2005 Feb; 282(1):193-201. PubMed ID: 15576099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How nonmagnetic particles intensify rotational diffusion in magnetorheological fluids.
    Rodríguez-Arco L; López-López MT; Kuzhir P; González-Caballero F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012310. PubMed ID: 25122306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies.
    Vereda F; de Vicente J; Hidalgo-Alvarez R
    Chemphyschem; 2009 Jun; 10(8):1165-79. PubMed ID: 19434654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative work on the magnetic field-dependent properties of plate-like and spherical iron particle-based magnetorheological grease.
    Mohamad N; Ubaidillah ; Mazlan SA; Imaduddin F; Choi SB; Yazid IIM
    PLoS One; 2018; 13(4):e0191795. PubMed ID: 29630595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.