These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21694374)

  • 1. Numerical renormalization group calculation of near-gap peaks in spectral functions of the Anderson model with superconducting leads.
    Hecht T; Weichselbaum A; von Delft J; Bulla R
    J Phys Condens Matter; 2008 Jul; 20(27):275213. PubMed ID: 21694374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variational numerical renormalization group: bridging the gap between NRG and density matrix renormalization group.
    Pižorn I; Verstraete F
    Phys Rev Lett; 2012 Feb; 108(6):067202. PubMed ID: 22401115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A local moment approach to the degenerate Anderson impurity model.
    Galpin MR; Gilbert AB; Logan DE
    J Phys Condens Matter; 2009 Sep; 21(37):375602. PubMed ID: 21832350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical renormalization group study of probability distributions for local fluctuations in the Anderson-Holstein and Holstein-Hubbard models.
    Hewson AC; Bauer J
    J Phys Condens Matter; 2010 Mar; 22(11):115602. PubMed ID: 21389469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The local effect of magnetic impurities on superconductivity in CoxNbSe2 and MnxNbSe2 single crystals.
    Iavarone M; Karapetrov G; Fedor J; Rosenmann D; Nishizaki T; Kobayashi N
    J Phys Condens Matter; 2010 Jan; 22(1):015501. PubMed ID: 21386227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A functional renormalization group approach to the Anderson impurity model.
    Bartosch L; Freire H; Cardenas JJ; Kopietz P
    J Phys Condens Matter; 2009 Jul; 21(30):305602. PubMed ID: 21828555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of superconductivity on the magnetic moment of quantum impurity embedded in BCS superconductor.
    Verma S; Singh A
    J Phys Condens Matter; 2020 Nov; ():. PubMed ID: 33212435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new renormalization group approach for systems with strong electron correlation.
    Edwards K; Hewson AC
    J Phys Condens Matter; 2011 Feb; 23(4):045601. PubMed ID: 21406889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Andreev states of a superconducting quantum dot: mean field versus exact numerical results.
    Martín-Rodero A; Yeyati AL
    J Phys Condens Matter; 2012 Sep; 24(38):385303. PubMed ID: 22945559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yu-Shiba-Rusinov screening of spins in double quantum dots.
    Grove-Rasmussen K; Steffensen G; Jellinggaard A; Madsen MH; Žitko R; Paaske J; Nygård J
    Nat Commun; 2018 Jun; 9(1):2376. PubMed ID: 29915280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical renormalization group study of pseudo-fermion and slave-boson spectral functions in the single impurity Anderson model.
    Costi TA; Schmitteckert P; Kroha J; Wölfle P
    Phys Rev Lett; 1994 Aug; 73(9):1275-1278. PubMed ID: 10057669
    [No Abstract]   [Full Text] [Related]  

  • 12. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212.
    Lee WS; Vishik IM; Tanaka K; Lu DH; Sasagawa T; Nagaosa N; Devereaux TP; Hussain Z; Shen ZX
    Nature; 2007 Nov; 450(7166):81-4. PubMed ID: 17972881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonequilibrium dynamics of a singlet-triplet Anderson impurity near the quantum phase transition.
    Roura Bas P; Aligia AA
    J Phys Condens Matter; 2010 Jan; 22(2):025602. PubMed ID: 21386260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A complete set of basis vectors of the Anderson model and its Kondo dynamics.
    Hong J
    J Phys Condens Matter; 2011 Jun; 23(22):225601. PubMed ID: 21576765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning impurity spectral functions from density of states.
    Ren XY; Han RS; Chen L
    J Phys Condens Matter; 2021 Sep; 33(49):. PubMed ID: 34500441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissipative exciton transfer in donor-bridge-acceptor systems: numerical renormalization group calculation of equilibrium properties.
    Tornow S; Tong NH; Bulla R
    J Phys Condens Matter; 2006 Jul; 18(26):5985-6000. PubMed ID: 21690813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sum-rule conserving spectral functions from the numerical renormalization group.
    Weichselbaum A; von Delft J
    Phys Rev Lett; 2007 Aug; 99(7):076402. PubMed ID: 17930909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum criticality of the two-channel pseudogap Anderson model: universal scaling in linear and non-linear conductance.
    Wu TP; Wang XQ; Guo GY; Anders F; Chung CH
    J Phys Condens Matter; 2016 May; 28(17):175003. PubMed ID: 27045815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anderson impurity in a correlated conduction band.
    Hofstetter W; Bulla R; Vollhardt D
    Phys Rev Lett; 2000 May; 84(19):4417-20. PubMed ID: 10990700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical renormalization group at marginal spectral density: application to tunneling in Luttinger liquids.
    Freyn A; Florens S
    Phys Rev Lett; 2011 Jul; 107(1):017201. PubMed ID: 21797566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.