These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21694423)

  • 21. Towards the fabrication of the top-contact electrode in molecular junctions by photoreduction of a metal precursor.
    Martín S; Pera G; Ballesteros LM; Hope AJ; Marqués-González S; Low PJ; Pérez-Murano F; Nichols RJ; Cea P
    Chemistry; 2014 Mar; 20(12):3421-6. PubMed ID: 24532391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode.
    Mirceski V; Gulaboski R
    J Phys Chem B; 2006 Feb; 110(6):2812-20. PubMed ID: 16471890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular electronics using diazonium-derived adlayers on carbon with Cu top contacts: critical analysis of metal oxides and filaments.
    Bergren AJ; Harris KD; Deng F; McCreery RL
    J Phys Condens Matter; 2008 Sep; 20(37):374117. PubMed ID: 21694424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A bipolar electrochemical approach to constructive lithography: metal/monolayer patterns via consecutive site-defined oxidation and reduction.
    Zeira A; Berson J; Feldman I; Maoz R; Sagiv J
    Langmuir; 2011 Jul; 27(13):8562-75. PubMed ID: 21661737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A core-shell strategy for constructing a single-molecule junction.
    Wang LJ; Zhou KG; Tan L; Wang H; Shi ZF; Wu GP; Xu ZG; Cao XP; He HX; Zhang HL
    Chemistry; 2011 Jul; 17(30):8414-23. PubMed ID: 21656581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identifying diversity in nanoscale electrical break junctions.
    Martín S; Grace I; Bryce MR; Wang C; Jitchati R; Batsanov AS; Higgins SJ; Lambert CJ; Nichols RJ
    J Am Chem Soc; 2010 Jul; 132(26):9157-64. PubMed ID: 20536142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical fabrication of metal/organic/metal junctions for molecular electronics and sensing applications.
    Dasari R; Ibañez FJ; Zamborini FP
    Langmuir; 2011 Jun; 27(11):7285-93. PubMed ID: 21073189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Building robust and reliable molecular constructs: patterning, metallic contacts, and layer-by-layer assembly.
    Walker AV
    Langmuir; 2010 Sep; 26(17):13778-85. PubMed ID: 20000621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions.
    Mativetsky JM; Pace G; Elbing M; Rampi MA; Mayor M; Samorì P
    J Am Chem Soc; 2008 Jul; 130(29):9192-3. PubMed ID: 18576645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules.
    Tian JH; Yang Y; Liu B; Schöllhorn B; Wu DY; Maisonhaute E; Muns AS; Chen Y; Amatore C; Tao NJ; Tian ZQ
    Nanotechnology; 2010 Jul; 21(27):274012. PubMed ID: 20571199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elastic, adhesive, and charge transport properties of a metal-molecule-metal junction: the role of molecular orientation, order, and coverage.
    DelRio FW; Steffens KL; Jaye C; Fischer DA; Cook RF
    Langmuir; 2010 Feb; 26(3):1688-99. PubMed ID: 19839640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-fidelity formation of a molecular-junction device using a thickness-controlled bilayer architecture.
    Bang GS; Chang H; Koo JR; Lee T; Advincula RC; Lee H
    Small; 2008 Sep; 4(9):1399-405. PubMed ID: 18720441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Situ Adjustable Nanogaps and In-Plane Break Junctions.
    Zhao X; Zhang X; Yin K; Zhang S; Zhao Z; Tan M; Xu X; Zhao Z; Wang M; Xu B; Lee T; Scheer E; Xiang D
    Small Methods; 2023 Apr; 7(4):e2201427. PubMed ID: 36732898
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron transport through single π-conjugated molecules bridging between metal electrodes.
    Kiguchi M; Kaneko S
    Chemphyschem; 2012 Apr; 13(5):1116-26. PubMed ID: 22311828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous nanoindentation and electron tunneling through alkanethiol self-assembled monolayers.
    Engelkes VB; Frisbie CD
    J Phys Chem B; 2006 May; 110(20):10011-20. PubMed ID: 16706460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Batch fabrication of gold-gold nanogaps by E-beam lithography and electrochemical deposition.
    Wu Y; Hong W; Akiyama T; Gautsch S; Kolivoska V; Wandlowski T; de Rooij NF
    Nanotechnology; 2013 Jun; 24(23):235302. PubMed ID: 23676659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Platinum-nanogaps for single-molecule electronics: room-temperature stability.
    Prins F; Shaikh AJ; van Esch JH; Eelkema R; van der Zant HS
    Phys Chem Chem Phys; 2011 Aug; 13(32):14297-301. PubMed ID: 21552603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron transport in single molecules: from benzene to graphene.
    Chen F; Tao NJ
    Acc Chem Res; 2009 Mar; 42(3):429-38. PubMed ID: 19253984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of Vertical Molecular Junction Devices with Conductive Polymer Contacts Using a Peeling Method.
    Konishi Y; Nagase T; Kobayashi T; Ueda R; Terui T; Otomo A; Naito H
    J Nanosci Nanotechnol; 2016 Apr; 16(4):3307-11. PubMed ID: 27451622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.