These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 21694714)

  • 1. Observing chaos for quantum-dot microlasers with external feedback.
    Albert F; Hopfmann C; Reitzenstein S; Schneider C; Höfling S; Worschech L; Kamp M; Kinzel W; Forchel A; Kanter I
    Nat Commun; 2011 Jun; 2():366. PubMed ID: 21694714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaotic microlasers caused by internal mode interaction for random number generation.
    Ma CG; Xiao JL; Xiao ZX; Yang YD; Huang YZ
    Light Sci Appl; 2022 Jun; 11(1):187. PubMed ID: 35725840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring the mode-switching dynamics in quantum-dot micropillar lasers via time-delayed optical feedback.
    Holzinger S; Redlich C; Lingnau B; Schmidt M; von Helversen M; Beyer J; Schneider C; Kamp M; Höfling S; Lüdge K; Porte X; Reitzenstein S
    Opt Express; 2018 Aug; 26(17):22457-22470. PubMed ID: 30130939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip quantum optics with quantum dot microcavities.
    Stock E; Albert F; Hopfmann C; Lermer M; Schneider C; Höfling S; Forchel A; Kamp M; Reitzenstein S
    Adv Mater; 2013 Feb; 25(5):707-10. PubMed ID: 23044860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels.
    Kreinberg S; Porte X; Schicke D; Lingnau B; Schneider C; Höfling S; Kanter I; Lüdge K; Reitzenstein S
    Nat Commun; 2019 Apr; 10(1):1539. PubMed ID: 30948766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of fast nondeterministic physical random-bit generation with chaotic lasers.
    Harayama T; Sunada S; Yoshimura K; Muramatsu J; Arai K; Uchida A; Davis P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046215. PubMed ID: 22680564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers.
    Hirano K; Yamazaki T; Morikatsu S; Okumura H; Aida H; Uchida A; Yoshimori S; Yoshimura K; Harayama T; Davis P
    Opt Express; 2010 Mar; 18(6):5512-24. PubMed ID: 20389568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing quantum transport by transient chaos.
    Yang R; Huang L; Lai YC; Grebogi C; Pecora LM
    Chaos; 2013 Mar; 23(1):013125. PubMed ID: 23556962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaotic light at mid-infrared wavelength.
    Jumpertz L; Schires K; Carras M; Sciamanna M; Grillot F
    Light Sci Appl; 2016 Jun; 5(6):e16088. PubMed ID: 30167171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth parameter optimization for fast quantum dot SESAMs.
    Maas DJ; Bellancourt AR; Hoffmann M; Rudin B; Barbarin Y; Golling M; Südmeyer T; Keller U
    Opt Express; 2008 Nov; 16(23):18646-56. PubMed ID: 19581950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoengineering the second order susceptibility in semiconductor quantum dot heterostructures.
    Zielinski M; Winter S; Kolkowski R; Nogues C; Oron D; Zyss J; Chauvat D
    Opt Express; 2011 Mar; 19(7):6657-70. PubMed ID: 21451693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-color multi-section quantum dot distributed feedback laser.
    Naderi NA; Grillot F; Yang K; Wright JB; Gin A; Lester LF
    Opt Express; 2010 Dec; 18(26):27028-35. PubMed ID: 21196979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaotic time-delay signature suppression using quantum noise.
    Guo Y; Fang X; Zhang H; Zhao T; Virte M; Guo X
    Opt Lett; 2021 Oct; 46(19):4888-4891. PubMed ID: 34598226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-power quantum-dot tapered tunable external-cavity lasers based on chirped and unchirped structures.
    Haggett S; Krakowski M; Montrosset I; Cataluna MA
    Opt Express; 2014 Sep; 22(19):22854-64. PubMed ID: 25321756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creating self-illuminating quantum dot conjugates.
    So MK; Loening AM; Gambhir SS; Rao J
    Nat Protoc; 2006; 1(3):1160-4. PubMed ID: 17406398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductance fluctuations in chaotic bilayer graphene quantum dots.
    Bao R; Huang L; Lai YC; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012918. PubMed ID: 26274258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailored first- and second-order coherence properties of quantum dot superluminescent diodes via optical feedback.
    Hartmann S; Molitor A; Blazek M; Elsässer W
    Opt Lett; 2013 Apr; 38(8):1334-6. PubMed ID: 23595476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory and experiment of submonolayer quantum-dot metal-cavity surface-emitting microlasers.
    Qiao P; Lu CY; Bimberg D; Chuang SL
    Opt Express; 2013 Dec; 21(25):30336-49. PubMed ID: 24514612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of chaos regularization of tunneling in chaotic quantum dots.
    Lee MJ; Antonsen TM; Ott E; Pecora LM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056212. PubMed ID: 23214862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.
    Kosionis SG; Terzis AF; Sadeghi SM; Paspalakis E
    J Phys Condens Matter; 2013 Jan; 25(4):045304. PubMed ID: 23257986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.