These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21695134)

  • 1. Membrane binding of plasmid DNA and endocytic pathways are involved in electrotransfection of mammalian cells.
    Wu M; Yuan F
    PLoS One; 2011; 6(6):e20923. PubMed ID: 21695134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of a Rac1-Dependent Macropinocytosis Pathway in Plasmid DNA Delivery by Electrotransfection.
    Mao M; Wang L; Chang CC; Rothenberg KE; Huang J; Wang Y; Hoffman BD; Liton PB; Yuan F
    Mol Ther; 2017 Mar; 25(3):803-815. PubMed ID: 28129959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of specific endocytic pathways in electrotransfection of cells.
    Chang CC; Wu M; Yuan F
    Mol Ther Methods Clin Dev; 2014; 1():14058. PubMed ID: 26052524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural Analysis of Vesicular Transport in Electrotransfection.
    Wang L; Miller SE; Yuan F
    Microsc Microanal; 2018 Oct; 24(5):553-563. PubMed ID: 30334512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copy number of naked DNA delivered into nucleus of mammalian cells by electrotransfection.
    Wang Y; Chang CC; Yuan F
    Bioelectrochemistry; 2023 Oct; 153():108491. PubMed ID: 37356265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of mechanisms of electric field-induced DNA transfection. V. Effects of DNA topology on surface binding, cell uptake, expression, and integration into host chromosomes of DNA in the mammalian cell.
    Xie TD; Tsong TY
    Biophys J; 1993 Oct; 65(4):1684-9. PubMed ID: 8274656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct effects of endosomal escape and inhibition of endosomal trafficking on gene delivery via electrotransfection.
    Cervia LD; Chang CC; Wang L; Yuan F
    PLoS One; 2017; 12(2):e0171699. PubMed ID: 28182739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors influencing the transfection efficiency and cellular uptake mechanisms of Pluronic P123-modified polypropyleneimine/pDNA polyplexes in multidrug resistant breast cancer cells.
    Gu J; Hao J; Fang X; Sha X
    Colloids Surf B Biointerfaces; 2016 Apr; 140():83-93. PubMed ID: 26741268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Progress in Electrotransfection as a Nonviral Method for Gene Delivery.
    Cervia LD; Yuan F
    Mol Pharm; 2018 Sep; 15(9):3617-3624. PubMed ID: 29889538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of crosslinking agents on the transfection efficiency, cellular and intracellular processing of DNA/polymer nanocomplexes.
    Zheng H; Tang C; Yin C
    Biomaterials; 2013 Apr; 34(13):3479-88. PubMed ID: 23398884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversal of P-glycoprotein-mediated multidrug resistance by CD44 antibody-targeted nanocomplexes for short hairpin RNA-encoding plasmid DNA delivery.
    Gu J; Fang X; Hao J; Sha X
    Biomaterials; 2015 Mar; 45():99-114. PubMed ID: 25662500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Setting optimal parameters for in vitro electrotransfection of B16F1, SA1, LPB, SCK, L929 and CHO cells using predefined exponentially decaying electric pulses.
    Cegovnik U; Novaković S
    Bioelectrochemistry; 2004 Apr; 62(1):73-82. PubMed ID: 14990328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene electrotransfer into murine skeletal muscle: a systematic analysis of parameters for long-term gene expression.
    Tevz G; Pavlin D; Kamensek U; Kranjc S; Mesojednik S; Coer A; Sersa G; Cemazar M
    Technol Cancer Res Treat; 2008 Apr; 7(2):91-101. PubMed ID: 18345697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Intensity Pulsed Electromagnetic Field-Mediated Gene Electrotransfection In Vitro.
    Kranjc M; Dermol-Černe J; Potočnik T; Novickij V; Miklavčič D
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36076938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing Electrotransfection Efficiency through Improvement in Nuclear Entry of Plasmid DNA.
    Cervia LD; Chang CC; Wang L; Mao M; Yuan F
    Mol Ther Nucleic Acids; 2018 Jun; 11():263-271. PubMed ID: 29858061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular co-delivery of zinc ions and plasmid DNA for enhancing gene transfection activity.
    Asayama S; Matsuda K; Negishi Y; Kawakami H
    Metallomics; 2014 Jan; 6(1):82-7. PubMed ID: 24084762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of mechanisms of electric field-induced DNA transfection. I. DNA entry by surface binding and diffusion through membrane pores.
    Xie TD; Sun L; Tsong TY
    Biophys J; 1990 Jul; 58(1):13-9. PubMed ID: 2200534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement in Electrotransfection of Cells Using Carbon-Based Electrodes.
    Chang CC; Mao M; Liu Y; Wu M; Vo-Dinh T; Yuan F
    Cell Mol Bioeng; 2016 Dec; 9(4):538-545. PubMed ID: 28239428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient targeted pDNA/siRNA delivery with folate-low-molecular-weight polyethyleneimine-modified pullulan as non-viral carrier.
    Wang J; Dou B; Bao Y
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():98-109. PubMed ID: 24268238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A double-pulse approach for electrotransfection.
    Pasquet L; Bellard E; Golzio M; Rols MP; Teissie J
    J Membr Biol; 2014 Dec; 247(12):1253-8. PubMed ID: 25135167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.