These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21695537)

  • 21. Prediction Enhancement of Residue Real-Value Relative Accessible Surface Area in Transmembrane Helical Proteins by Solving the Output Preference Problem of Machine Learning-Based Predictors.
    Xiao F; Shen HB
    J Chem Inf Model; 2015 Nov; 55(11):2464-74. PubMed ID: 26455366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. waveTM: wavelet-based transmembrane segment prediction.
    Pashou EE; Litou ZI; Liakopoulos TD; Hamodrakas SJ
    In Silico Biol; 2004; 4(2):127-31. PubMed ID: 15107018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine.
    Hayat M; Tahir M
    Mol Biosyst; 2015 Aug; 11(8):2255-62. PubMed ID: 26054033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Online tools for predicting integral membrane proteins.
    Bigelow H; Rost B
    Methods Mol Biol; 2009; 528():3-23. PubMed ID: 19153681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of buried helices in multispan alpha helical membrane proteins.
    Adamian L; Liang J
    Proteins; 2006 Apr; 63(1):1-5. PubMed ID: 16419070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning protein multi-view features in complex space.
    Yu DJ; Hu J; Wu XW; Shen HB; Chen J; Tang ZM; Yang J; Yang JY
    Amino Acids; 2013 May; 44(5):1365-79. PubMed ID: 23456487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A combination of compositional index and genetic algorithm for predicting transmembrane helical segments.
    Zaki N; Bouktif S; Lazarova-Molnar S
    PLoS One; 2011; 6(7):e21821. PubMed ID: 21814556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of the human membrane proteome.
    Fagerberg L; Jonasson K; von Heijne G; Uhlén M; Berglund L
    Proteomics; 2010 Mar; 10(6):1141-9. PubMed ID: 20175080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H; Raghava GP
    Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Hidden Markov Model method, capable of predicting and discriminating beta-barrel outer membrane proteins.
    Bagos PG; Liakopoulos TD; Spyropoulos IC; Hamodrakas SJ
    BMC Bioinformatics; 2004 Mar; 5():29. PubMed ID: 15070403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural network prediction of 3(10)-helices in proteins.
    Pal L; Basu G
    Indian J Biochem Biophys; 2001; 38(1-2):107-14. PubMed ID: 11563321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes.
    Kahsay RY; Gao G; Liao L
    Bioinformatics; 2005 May; 21(9):1853-8. PubMed ID: 15691854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. State-of-the-art in membrane protein prediction.
    Chen CP; Rost B
    Appl Bioinformatics; 2002; 1(1):21-35. PubMed ID: 15130854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calibrating E-values for hidden Markov models using reverse-sequence null models.
    Karplus K; Karchin R; Shackelford G; Hughey R
    Bioinformatics; 2005 Nov; 21(22):4107-15. PubMed ID: 16123115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods.
    Natt NK; Kaur H; Raghava GP
    Proteins; 2004 Jul; 56(1):11-8. PubMed ID: 15162482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting protein fold pattern with functional domain and sequential evolution information.
    Shen HB; Chou KC
    J Theor Biol; 2009 Feb; 256(3):441-6. PubMed ID: 18996396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A high-accuracy protein structural class prediction algorithm using predicted secondary structural information.
    Liu T; Jia C
    J Theor Biol; 2010 Dec; 267(3):272-5. PubMed ID: 20831876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction.
    Pilpel Y; Ben-Tal N; Lancet D
    J Mol Biol; 1999 Dec; 294(4):921-35. PubMed ID: 10588897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.