These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21695794)

  • 61. Enhancing Myoblast Fusion and Myotube Diameter in Human 3D Skeletal Muscle Constructs by Electromagnetic Stimulation.
    Terrie L; Burattini M; Van Vlierberghe S; Fassina L; Thorrez L
    Front Bioeng Biotechnol; 2022; 10():892287. PubMed ID: 35814025
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microphysiological system for studying contractile differences in young, active, and old, sedentary adult derived skeletal muscle cells.
    Giza S; Mojica-Santiago JA; Parafati M; Malany LK; Platt D; Schmidt CE; Coen PM; Malany S
    Aging Cell; 2022 Jul; 21(7):e13650. PubMed ID: 35653714
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Using Vertebrate Stem and Progenitor Cells for Cellular Agriculture, State-of-the-Art, Challenges, and Future Perspectives.
    Knežić T; Janjušević L; Djisalov M; Yodmuang S; Gadjanski I
    Biomolecules; 2022 May; 12(5):. PubMed ID: 35625626
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Contractile force assessment methods for in vitro skeletal muscle tissues.
    Vesga-Castro C; Aldazabal J; Vallejo-Illarramendi A; Paredes J
    Elife; 2022 May; 11():. PubMed ID: 35604384
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Available In Vitro Models for Human Satellite Cells from Skeletal Muscle.
    Romagnoli C; Iantomasi T; Brandi ML
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948017
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges.
    Bomkamp C; Skaalure SC; Fernando GF; Ben-Arye T; Swartz EW; Specht EA
    Adv Sci (Weinh); 2022 Jan; 9(3):e2102908. PubMed ID: 34786874
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Contractile Activity of Myotubes Derived from Human Induced Pluripotent Stem Cells: A Model of Duchenne Muscular Dystrophy.
    Yoshioka K; Ito A; Horie M; Ikeda K; Kataoka S; Sato K; Yoshigai T; Sakurai H; Hotta A; Kawabe Y; Kamihira M
    Cells; 2021 Sep; 10(10):. PubMed ID: 34685536
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Making Sense of Making Meat: Key Moments in the First 20 Years of Tissue Engineering Muscle to Make Food.
    Stephens N; Sexton AE; Driessen C
    Front Sustain Food Syst; 2019 Jul; 3():45. PubMed ID: 34250447
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs.
    Uchimura T; Asano T; Nakata T; Hotta A; Sakurai H
    Cell Rep Med; 2021 Jun; 2(6):100298. PubMed ID: 34195678
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Skeletal Muscle Regenerative Engineering.
    Tang X; Daneshmandi L; Awale G; Nair LS; Laurencin CT
    Regen Eng Transl Med; 2019 Sep; 5(3):233-251. PubMed ID: 33778155
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Formation of contractile 3D bovine muscle tissue for construction of millimetre-thick cultured steak.
    Furuhashi M; Morimoto Y; Shima A; Nakamura F; Ishikawa H; Takeuchi S
    NPJ Sci Food; 2021 Mar; 5(1):6. PubMed ID: 33654079
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tissue Engineering for Musculoskeletal Regeneration and Disease Modeling.
    Li Z; Xiang S; Li EN; Fritch MR; Alexander PG; Lin H; Tuan RS
    Handb Exp Pharmacol; 2021; 265():235-268. PubMed ID: 33471201
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microphysiological Systems: Design, Fabrication, and Applications.
    Wang K; Man K; Liu J; Liu Y; Chen Q; Zhou Y; Yang Y
    ACS Biomater Sci Eng; 2020 Jun; 6(6):3231-3257. PubMed ID: 33204830
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of Graphene Oxide Nanofilm and Chicken Embryo Muscle Extract on Muscle Progenitor Cell Differentiation and Contraction.
    Bałaban J; Wierzbicki M; Zielińska M; Szczepaniak J; Sosnowska M; Daniluk K; Cysewski D; Koczoń P; Chwalibog A; Sawosz E
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32340398
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Bioactive polymeric materials and electrical stimulation strategies for musculoskeletal tissue repair and regeneration.
    Ferrigno B; Bordett R; Duraisamy N; Moskow J; Arul MR; Rudraiah S; Nukavarapu SP; Vella AT; Kumbar SG
    Bioact Mater; 2020 Sep; 5(3):468-485. PubMed ID: 32280836
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Microcarriers for Upscaling Cultured Meat Production.
    Bodiou V; Moutsatsou P; Post MJ
    Front Nutr; 2020; 7():10. PubMed ID: 32154261
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells.
    Beugels J; Molin DGM; Ophelders DRMG; Rutten T; Kessels L; Kloosterboer N; Grzymala AAP; Kramer BWW; van der Hulst RRWJ; Wolfs TGAM
    Sci Rep; 2019 Aug; 9(1):12076. PubMed ID: 31427631
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Functional regeneration of tissue engineered skeletal muscle in vitro is dependent on the inclusion of basement membrane proteins.
    Fleming JW; Capel AJ; Rimington RP; Player DJ; Stolzing A; Lewis MP
    Cytoskeleton (Hoboken); 2019 Jun; 76(6):371-382. PubMed ID: 31376315
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Bioprinting of a Cell-Laden Conductive Hydrogel Composite.
    Spencer AR; Shirzaei Sani E; Soucy JR; Corbet CC; Primbetova A; Koppes RA; Annabi N
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30518-30533. PubMed ID: 31373791
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Oxygen consumption in human, tissue-engineered myobundles during basal and electrical stimulation conditions.
    Davis BN; Yen R; Prasad V; Truskey GA
    APL Bioeng; 2019 Jun; 3(2):026103. PubMed ID: 31149650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.