BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 21696330)

  • 41. Comparison of two channel selection criteria for noise suppression in cochlear implants.
    Hazrati O; Loizou PC
    J Acoust Soc Am; 2013 Mar; 133(3):1615-24. PubMed ID: 23464031
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electric-acoustic forward masking in cochlear implant users with ipsilateral residual hearing.
    Imsiecke M; Krüger B; Büchner A; Lenarz T; Nogueira W
    Hear Res; 2018 Jul; 364():25-37. PubMed ID: 29673567
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Acoustic cue integration in speech intonation recognition with cochlear implants.
    Peng SC; Chatterjee M; Lu N
    Trends Amplif; 2012 Jun; 16(2):67-82. PubMed ID: 22790392
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improving speech-in-noise recognition for children with hearing loss: potential effects of language abilities, binaural summation, and head shadow.
    Nittrouer S; Caldwell-Tarr A; Tarr E; Lowenstein JH; Rice C; Moberly AC
    Int J Audiol; 2013 Aug; 52(8):513-25. PubMed ID: 23834373
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bimodal benefits in Mandarin-speaking cochlear implant users with contralateral residual acoustic hearing.
    Yang HI; Zeng FG
    Int J Audiol; 2017; 56(sup2):S17-S22. PubMed ID: 28485635
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting effects of hearing-instrument signal processing on consonant perception.
    Zaar J; Schmitt N; Derleth RP; DiNino M; Arenberg JG; Dau T
    J Acoust Soc Am; 2017 Nov; 142(5):3216. PubMed ID: 29195458
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The ability of cochlear implant users to use temporal envelope cues recovered from speech frequency modulation.
    Won JH; Lorenzi C; Nie K; Li X; Jameyson EM; Drennan WR; Rubinstein JT
    J Acoust Soc Am; 2012 Aug; 132(2):1113-9. PubMed ID: 22894230
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Psychoacoustic and electrophysiological electric-acoustic interaction effects in cochlear implant users with ipsilateral residual hearing.
    Imsiecke M; Büchner A; Lenarz T; Nogueira W
    Hear Res; 2020 Feb; 386():107873. PubMed ID: 31884220
    [TBL] [Abstract][Full Text] [Related]  

  • 49. European multi-centre study of the Nucleus Hybrid L24 cochlear implant.
    Lenarz T; James C; Cuda D; Fitzgerald O'Connor A; Frachet B; Frijns JH; Klenzner T; Laszig R; Manrique M; Marx M; Merkus P; Mylanus EA; Offeciers E; Pesch J; Ramos-Macias A; Robier A; Sterkers O; Uziel A
    Int J Audiol; 2013 Dec; 52(12):838-48. PubMed ID: 23992489
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The combined effects of reverberation and noise on speech intelligibility by cochlear implant listeners.
    Hazrati O; Loizou PC
    Int J Audiol; 2012 Jun; 51(6):437-43. PubMed ID: 22356300
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Binaural advantages in users of bimodal and bilateral cochlear implant devices.
    Kokkinakis K; Pak N
    J Acoust Soc Am; 2014 Jan; 135(1):EL47-53. PubMed ID: 24437856
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Syllable-constituent perception by hearing-aid users: Common factors in quiet and noise.
    Miller JD; Watson CS; Leek MR; Dubno JR; Wark DJ; Souza PE; Gordon-Salant S; Ahlstrom JB
    J Acoust Soc Am; 2017 Apr; 141(4):2933. PubMed ID: 28464618
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users.
    Anderson ES; Nelson DA; Kreft H; Nelson PB; Oxenham AJ
    J Acoust Soc Am; 2011 Jul; 130(1):364-75. PubMed ID: 21786905
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Overlapping frequency coverage and simulated spatial cue effects on bimodal (electrical and acoustical) sentence recognition in noise.
    Green T; Faulkner A; Rosen S
    J Acoust Soc Am; 2014 Feb; 135(2):851-61. PubMed ID: 25234893
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of speech recognition abilities in quiet and in noise: a comparison between self-administered home testing and testing in the clinic for adult cochlear implant users.
    de Graaff F; Huysmans E; Merkus P; Theo Goverts S; Smits C
    Int J Audiol; 2018 Nov; 57(11):872-880. PubMed ID: 30261772
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adjustments of the amplitude mapping function: Sensitivity of cochlear implant users and effects on subjective preference and speech recognition.
    Theelen-van den Hoek FL; Boymans M; van Dijk B; Dreschler WA
    Int J Audiol; 2016 Nov; 55(11):674-87. PubMed ID: 27447758
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Top-down restoration of speech in cochlear-implant users.
    Bhargava P; Gaudrain E; Başkent D
    Hear Res; 2014 Mar; 309():113-23. PubMed ID: 24368138
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving speech perception in noise with current focusing in cochlear implant users.
    Srinivasan AG; Padilla M; Shannon RV; Landsberger DM
    Hear Res; 2013 May; 299():29-36. PubMed ID: 23467170
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Factors constraining the benefit to speech understanding of combining information from low-frequency hearing and a cochlear implant.
    Dorman MF; Cook S; Spahr A; Zhang T; Loiselle L; Schramm D; Whittingham J; Gifford R
    Hear Res; 2015 Apr; 322():107-11. PubMed ID: 25285624
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of insertion depth on spatial speech perception in noise for simulations of cochlear implants and single-sided deafness.
    Zhou X; Li H; Galvin JJ; Fu QJ; Yuan W
    Int J Audiol; 2017; 56(sup2):S41-S48. PubMed ID: 27367147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.