These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 21696330)

  • 101. Combining acoustic and electric stimulation in the service of speech recognition.
    Dorman MF; Gifford RH
    Int J Audiol; 2010 Dec; 49(12):912-9. PubMed ID: 20874053
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Clinical assessment of spectral modulation detection for adult cochlear implant recipients: a non-language based measure of performance outcomes.
    Gifford RH; Hedley-Williams A; Spahr AJ
    Int J Audiol; 2014 Mar; 53(3):159-64. PubMed ID: 24456178
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Improved perception of speech in noise and Mandarin tones with acoustic simulations of harmonic coding for cochlear implants.
    Li X; Nie K; Imennov NS; Won JH; Drennan WR; Rubinstein JT; Atlas LE
    J Acoust Soc Am; 2012 Nov; 132(5):3387-98. PubMed ID: 23145619
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Place specificity measured in forward and interleaved masking in cochlear implants.
    Azadpour M; AlJasser A; McKay CM
    J Acoust Soc Am; 2013 Oct; 134(4):EL314-20. PubMed ID: 24116536
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Auditory training of speech recognition with interrupted and continuous noise maskers by children with hearing impairment.
    Sullivan JR; Thibodeau LM; Assmann PF
    J Acoust Soc Am; 2013 Jan; 133(1):495-501. PubMed ID: 23297921
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Musician effect in cochlear implant simulated gender categorization.
    Fuller CD; Galvin JJ; Free RH; Başkent D
    J Acoust Soc Am; 2014 Mar; 135(3):EL159-65. PubMed ID: 24606310
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Effects of early and late reflections on intelligibility of reverberated speech by cochlear implant listeners.
    Hu Y; Kokkinakis K
    J Acoust Soc Am; 2014 Jan; 135(1):EL22-8. PubMed ID: 24437852
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Two-microphone spatial filtering improves speech reception for cochlear-implant users in reverberant conditions with multiple noise sources.
    Goldsworthy RL
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25330772
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Tailoring auditory training to patient needs with single and multiple talkers: transfer-appropriate gains on a four-choice discrimination test.
    Barcroft J; Sommers MS; Tye-Murray N; Mauzé E; Schroy C; Spehar B
    Int J Audiol; 2011 Nov; 50(11):802-8. PubMed ID: 21929377
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Ipsilateral masking between acoustic and electric stimulations.
    Lin P; Turner CW; Gantz BJ; Djalilian HR; Zeng FG
    J Acoust Soc Am; 2011 Aug; 130(2):858-65. PubMed ID: 21877801
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Perception of stochastic envelopes by normal-hearing and cochlear-implant listeners.
    Gomersall PA; Turner RE; Baguley DM; Deeks JM; Gockel HE; Carlyon RP
    Hear Res; 2016 Mar; 333():8-24. PubMed ID: 26706708
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Detection of acoustic temporal fine structure by cochlear implant listeners: behavioral results and computational modeling.
    Imennov NS; Won JH; Drennan WR; Jameyson E; Rubinstein JT
    Hear Res; 2013 Apr; 298():60-72. PubMed ID: 23333260
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Detection and rate discrimination of amplitude modulation in electrical hearing.
    Chatterjee M; Oberzut C
    J Acoust Soc Am; 2011 Sep; 130(3):1567-80. PubMed ID: 21895095
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Temporal pitch perception at high rates in cochlear implants.
    Kong YY; Carlyon RP
    J Acoust Soc Am; 2010 May; 127(5):3114-23. PubMed ID: 21117760
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Two-microphone spatial filtering provides speech reception benefits for cochlear implant users in difficult acoustic environments.
    Goldsworthy RL; Delhorne LA; Desloge JG; Braida LD
    J Acoust Soc Am; 2014 Aug; 136(2):867-76. PubMed ID: 25096120
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Discrimination between sequential and simultaneous virtual channels with electrical hearing.
    Landsberger D; Galvin JJ
    J Acoust Soc Am; 2011 Sep; 130(3):1559-66. PubMed ID: 21895094
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Temporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cues.
    Fraser M; McKay CM
    Hear Res; 2012 Jan; 283(1-2):59-69. PubMed ID: 22146425
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Electro-haptic enhancement of speech-in-noise performance in cochlear implant users.
    Fletcher MD; Hadeedi A; Goehring T; Mills SR
    Sci Rep; 2019 Aug; 9(1):11428. PubMed ID: 31388053
    [TBL] [Abstract][Full Text] [Related]  

  • 119. The Acoustic Change Complex Compared to Hearing Performance in Unilaterally and Bilaterally Deaf Cochlear Implant Users.
    van Heteren JAA; Vonck BMD; Stokroos RJ; Versnel H; Lammers MJW
    Ear Hear; 2022 Nov-Dec 01; 43(6):1783-1799. PubMed ID: 35696186
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Test-retest reliability of the Toy Discrimination Test with a masker of noise or babble in children with hearing impairment.
    Lovett R; Summerfield Q; Vickers D
    Int J Audiol; 2013 Jun; 52(6):377-84. PubMed ID: 23516964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.