These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21696360)

  • 1. Active tumor targeting of nanomaterials using folic acid, transferrin and integrin receptors.
    Kolhatkar R; Lote A; Khambati H
    Curr Drug Discov Technol; 2011 Sep; 8(3):197-206. PubMed ID: 21696360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel α
    Wang F; Li L; Sun W; Li L; Liu Y; Huang Y; Zhou Z
    J Drug Target; 2018 Mar; 26(3):231-241. PubMed ID: 28792244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transferrin-Conjugated Nanocarriers as Active-Targeted Drug Delivery Platforms for Cancer Therapy.
    Nogueira-Librelotto DR; Codevilla CF; Farooqi A; Rolim CM
    Curr Pharm Des; 2017; 23(3):454-466. PubMed ID: 27784246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Folate-Targeted Nanoliposomal System of Doxorubicin for Cancer Targeting.
    Lohade AA; Jain RR; Iyer K; Roy SK; Shimpi HH; Pawar Y; Rajan MG; Menon MD
    AAPS PharmSciTech; 2016 Dec; 17(6):1298-1311. PubMed ID: 26689406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folate-conjugated nanovehicles: Strategies for cancer therapy.
    Farran B; Montenegro RC; Kasa P; Pavitra E; Huh YS; Han YK; Kamal MA; Nagaraju GP; Rama Raju GS
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110341. PubMed ID: 31761235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymeric conjugates of mono- and bi-cyclic alphaVbeta3 binding peptides for tumor targeting.
    Mitra A; Coleman T; Borgman M; Nan A; Ghandehari H; Line BR
    J Control Release; 2006 Aug; 114(2):175-83. PubMed ID: 16889865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic active targeting of dually integrin αvβ3/CD44-targeted nanoparticles to B16F10 tumors located at different sites of mouse bodies.
    Shi S; Zhou M; Li X; Hu M; Li C; Li M; Sheng F; Li Z; Wu G; Luo M; Cui H; Li Z; Fu R; Xiang M; Xu J; Zhang Q; Lu L
    J Control Release; 2016 Aug; 235():1-13. PubMed ID: 27235150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tweaking dendrimers and dendritic nanoparticles for controlled nano-bio interactions: potential nanocarriers for improved cancer targeting.
    Bugno J; Hsu HJ; Hong S
    J Drug Target; 2015; 23(7-8):642-50. PubMed ID: 26453160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HPMA copolymer-cyclic RGD conjugates for tumor targeting.
    Pike DB; Ghandehari H
    Adv Drug Deliv Rev; 2010 Feb; 62(2):167-83. PubMed ID: 19951733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetraiodothyroacetic acid-tagged liposomes for enhanced delivery of anticancer drug to tumor tissue via integrin receptor.
    Lee S; Kim J; Shim G; Kim S; Han SE; Kim K; Kwon IC; Choi Y; Kim YB; Kim CW; Oh YK
    J Control Release; 2012 Dec; 164(2):213-20. PubMed ID: 22664473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liposome targeting to tumors using vitamin and growth factor receptors.
    Drummond DC; Hong K; Park JW; Benz CC; Kirpotin DB
    Vitam Horm; 2000; 60():285-332. PubMed ID: 11037627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient delivery of therapeutic agents by using targeted albumin nanoparticles.
    Kouchakzadeh H; Safavi MS; Shojaosadati SA
    Adv Protein Chem Struct Biol; 2015; 98():121-43. PubMed ID: 25819278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Screening System for Targeting Carriers Using Peptide-Modified Liposomes and Tissue Sections.
    Negishi Y; Hamano N; Sato H; Katagiri F; Takatori K; Endo-Takahashi Y; Kikkawa Y; Nomizu M
    Biol Pharm Bull; 2018; 41(7):1107-1111. PubMed ID: 29962407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrin-targeted delivery into cancer cells of a Pt(IV) pro-drug through conjugation to RGD-containing peptides.
    Massaguer A; González-Cantó A; Escribano E; Barrabés S; Artigas G; Moreno V; Marchán V
    Dalton Trans; 2015 Jan; 44(1):202-12. PubMed ID: 25369773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lung cancer targeted therapy: Folate and transferrin dual targeted, glutathione responsive nanocarriers for the delivery of cisplatin.
    Tan S; Wang G
    Biomed Pharmacother; 2018 Jun; 102():55-63. PubMed ID: 29549729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hollow microspheres based on - Folic acid modified - Hydroxypropyl Cellulose and synthetic multi-responsive bio-copolymer for targeted cancer therapy: controlled release of daunorubicin, in vitro and in vivo studies.
    Metaxa AF; Efthimiadou EK; Boukos N; Fragogeorgi EA; Loudos G; Kordas G
    J Colloid Interface Sci; 2014 Dec; 435():171-81. PubMed ID: 25261841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-responsive polymer-liposomes for intracellular drug delivery and tumor extracellular matrix switched-on targeted cancer therapy.
    Chiang YT; Lo CL
    Biomaterials; 2014 Jul; 35(20):5414-5424. PubMed ID: 24709521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles for tumor targeted therapies and their pharmacokinetics.
    Wang J; Sui M; Fan W
    Curr Drug Metab; 2010 Feb; 11(2):129-41. PubMed ID: 20359289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendronized Systems for the Delivery of Chemotherapeutics.
    Dockery L; Daniel MC
    Adv Cancer Res; 2018; 139():85-120. PubMed ID: 29941108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.