These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Proteome profiling in murine models of multiple sclerosis: identification of stage specific markers and culprits for tissue damage. Linker RA; Brechlin P; Jesse S; Steinacker P; Lee DH; Asif AR; Jahn O; Tumani H; Gold R; Otto M PLoS One; 2009 Oct; 4(10):e7624. PubMed ID: 19865482 [TBL] [Abstract][Full Text] [Related]
43. Evaluation of the anti-hypertensive effect of Tengfu Jiangya tablet by combination of UPLC-Q-exactive-MS-based metabolomics and iTRAQ-based proteomics technology. Tian Y; Jiang F; Li Y; Jiang H; Chu Y; Zhu L; Guo W Biomed Pharmacother; 2018 Apr; 100():324-334. PubMed ID: 29453042 [TBL] [Abstract][Full Text] [Related]
44. Chronic mild stress exacerbates severity of experimental autoimmune encephalomyelitis in association with altered non-coding RNA and metabolic biomarkers. Gerrard B; Singh V; Babenko O; Gauthier I; Wee Yong V; Kovalchuk I; Luczak A; Metz GAS Neuroscience; 2017 Sep; 359():299-307. PubMed ID: 28739526 [TBL] [Abstract][Full Text] [Related]
45. In Vivo Quantification of Inflammation in Experimental Autoimmune Encephalomyelitis Rats Using Fluorine-19 Magnetic Resonance Imaging Reveals Immune Cell Recruitment outside the Nervous System. Zhong J; Narsinh K; Morel PA; Xu H; Ahrens ET PLoS One; 2015; 10(10):e0140238. PubMed ID: 26485716 [TBL] [Abstract][Full Text] [Related]
46. Proteomics of human cerebrospinal fluid: discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics. Kroksveen AC; Opsahl JA; Aye TT; Ulvik RJ; Berven FS J Proteomics; 2011 Apr; 74(4):371-88. PubMed ID: 21111852 [TBL] [Abstract][Full Text] [Related]
47. Vitamin D-binding protein in cerebrospinal fluid is associated with multiple sclerosis progression. Yang M; Qin Z; Zhu Y; Li Y; Qin Y; Jing Y; Liu S Mol Neurobiol; 2013 Jun; 47(3):946-56. PubMed ID: 23339019 [TBL] [Abstract][Full Text] [Related]
49. Biomarkers in Transplantation--Proteomics and Metabolomics. Christians U; Klawitter J; Klawitter J Ther Drug Monit; 2016 Apr; 38 Suppl 1(Suppl 1):S70-4. PubMed ID: 26418702 [TBL] [Abstract][Full Text] [Related]
50. Melatonin exacerbates acute experimental autoimmune encephalomyelitis by enhancing the serum levels of lactate: A potential biomarker of multiple sclerosis progression. Ghareghani M; Dokoohaki S; Ghanbari A; Farhadi N; Zibara K; Khodadoust S; Parishani M; Ghavamizadeh M; Sadeghi H Clin Exp Pharmacol Physiol; 2017 Jan; 44(1):52-61. PubMed ID: 27696474 [TBL] [Abstract][Full Text] [Related]
51. Insights into the human brain proteome: Disclosing the biological meaning of protein networks in cerebrospinal fluid. Bastos P; Ferreira R; Manadas B; Moreira PI; Vitorino R Crit Rev Clin Lab Sci; 2017 May; 54(3):185-204. PubMed ID: 28393582 [TBL] [Abstract][Full Text] [Related]
52. Bilirubin as a potent antioxidant suppresses experimental autoimmune encephalomyelitis: implications for the role of oxidative stress in the development of multiple sclerosis. Liu Y; Zhu B; Wang X; Luo L; Li P; Paty DW; Cynader MS J Neuroimmunol; 2003 Jun; 139(1-2):27-35. PubMed ID: 12799017 [TBL] [Abstract][Full Text] [Related]
53. Artificial intelligence and amniotic fluid multiomics: prediction of perinatal outcome in asymptomatic women with short cervix. Bahado-Singh RO; Sonek J; McKenna D; Cool D; Aydas B; Turkoglu O; Bjorndahl T; Mandal R; Wishart D; Friedman P; Graham SF; Yilmaz A Ultrasound Obstet Gynecol; 2019 Jul; 54(1):110-118. PubMed ID: 30381856 [TBL] [Abstract][Full Text] [Related]
55. Ellagic acid protects from myelin-associated sphingolipid loss in experimental autoimmune encephalomyelitis. Busto R; Serna J; Perianes-Cachero A; Quintana-Portillo R; García-Seisdedos D; Canfrán-Duque A; Paino CL; Lerma M; Casado ME; Martín-Hidalgo A; Arilla-Ferreiro E; Lasunción MA; Pastor Ó Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Sep; 1863(9):958-967. PubMed ID: 29793057 [TBL] [Abstract][Full Text] [Related]
56. Experimental autoimmune encephalomyelitis in Lewis rats: IFN-beta acts as a tolerogenic adjuvant for induction of neuroantigen-dependent tolerance. Mannie MD; Abbott DJ; Blanchfield JL J Immunol; 2009 May; 182(9):5331-41. PubMed ID: 19380780 [TBL] [Abstract][Full Text] [Related]
57. A novel PADRE-Kv1.3 vaccine effectively induces therapeutic antibodies and ameliorates experimental autoimmune encephalomyelitis in rats. Fan C; Long R; You Y; Wang J; Yang X; Huang S; Sheng Y; Peng X; Liu H; Wang Z; Liu K Clin Immunol; 2018 Aug; 193():98-109. PubMed ID: 29496642 [TBL] [Abstract][Full Text] [Related]
58. Low susceptibility to the induction of experimental autoimmune encephalomyelitis in a substrain of the otherwise susceptible Lewis rat. Källén B; Lögdberg L Eur J Immunol; 1982 Jul; 12(7):596-9. PubMed ID: 6180908 [TBL] [Abstract][Full Text] [Related]
59. Proteomics and metabolomics characterizing the pathophysiology of adaptive reactions to the metabolic challenges during the transition from late pregnancy to early lactation in dairy cows. Ceciliani F; Lecchi C; Urh C; Sauerwein H J Proteomics; 2018 Apr; 178():92-106. PubMed ID: 29055723 [TBL] [Abstract][Full Text] [Related]
60. Cerebrospinal Fluid Metabolomics After Natural Product Treatment in an Experimental Model of Cerebral Ischemia. Huan T; Xian JW; Leung WN; Li L; Chan CW OMICS; 2016 Nov; 20(11):670-680. PubMed ID: 27732148 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]