These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21696743)

  • 1. On the derivation of passive 3D material parameters from 1D stress-strain data of hydrostats.
    Winkel B; Schleichardt A
    J Biomech; 2011 Jul; 44(11):2113-7. PubMed ID: 21696743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite element simulation scheme for biological muscular hydrostats.
    Liang Y; McMeeking RM; Evans AG
    J Theor Biol; 2006 Sep; 242(1):142-50. PubMed ID: 16580021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite-element model for the mechanical analysis of skeletal muscles.
    Johansson T; Meier P; Blickhan R
    J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction.
    Tsui CP; Tang CY; Leung CP; Cheng KW; Ng YF; Chow DH; Li CK
    Biomed Mater Eng; 2004; 14(3):271-9. PubMed ID: 15299239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour.
    Tang CY; Zhang G; Tsui CP
    J Biomech; 2009 May; 42(7):865-72. PubMed ID: 19264310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromechanical modelling of skeletal muscles based on the finite element method.
    Böl M; Reese S
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):489-504. PubMed ID: 19230146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A shell finite element model of the pelvic floor muscles.
    d'Aulignac D; Martins JA; Pires EB; Mascarenhas T; Jorge RM
    Comput Methods Biomech Biomed Engin; 2005 Oct; 8(5):339-47. PubMed ID: 16298856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods.
    Chawla A; Mukherjee S; Karthikeyan B
    Biomech Model Mechanobiol; 2009 Feb; 8(1):67-76. PubMed ID: 18293021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for a mechanical characterisation of human gluteal tissue.
    Then C; Menger J; Benderoth G; Alizadeh M; Vogl TJ; Hübner F; Silber G
    Technol Health Care; 2007; 15(6):385-98. PubMed ID: 18057562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A framework for structured modeling of skeletal muscle.
    Lemos RR; Epstein M; Herzog W; Wyvill B
    Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):305-17. PubMed ID: 15621651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a combination of continuum and truss finite elements in a model of passive and active muscle tissue.
    Hedenstierna S; Halldin P; Brolin K
    Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):627-39. PubMed ID: 18642161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle.
    Grasa J; Ramírez A; Osta R; Muñoz MJ; Soteras F; Calvo B
    Biomech Model Mechanobiol; 2011 Oct; 10(5):779-87. PubMed ID: 21127938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive properties of passive skeletal muscle-the impact of precise sample geometry on parameter identification in inverse finite element analysis.
    Böl M; Kruse R; Ehret AE; Leichsenring K; Siebert T
    J Biomech; 2012 Oct; 45(15):2673-9. PubMed ID: 22954714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A visco-hyperelastic model for skeletal muscle tissue under high strain rates.
    Lu YT; Zhu HX; Richmond S; Middleton J
    J Biomech; 2010 Sep; 43(13):2629-32. PubMed ID: 20566197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creating and simulating skeletal muscle from the visible human data set.
    Teran J; Sifakis E; Blemker SS; Ng-Thow-Hing V; Lau C; Fedkiw R
    IEEE Trans Vis Comput Graph; 2005; 11(3):317-28. PubMed ID: 15868831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of the tibio-femoral response to finite element modeling parameters.
    Beillas P; Lee SW; Tashman S; Yang KH
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):209-21. PubMed ID: 17558649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an in vivo method for determining material properties of passive myocardium.
    Remme EW; Hunter PJ; Smiseth O; Stevens C; Rabben SI; Skulstad H; Angelsen BB
    J Biomech; 2004 May; 37(5):669-78. PubMed ID: 15046996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of active skeletal muscle tissue with a transversely isotropic viscohyperelastic continuum material model.
    Khodaei H; Mostofizadeh S; Brolin K; Johansson H; Osth J
    Proc Inst Mech Eng H; 2013 May; 227(5):571-80. PubMed ID: 23637267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing cardiac material parameters with a genetic algorithm.
    Nair AU; Taggart DG; Vetter FJ
    J Biomech; 2007; 40(7):1646-50. PubMed ID: 17056049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.