These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 21696900)

  • 1. Evaluation of vapor profiles of explosives over time using ATASS (Automated Training Aid Simulation using SPME).
    Moore S; Maccrehan W; Schantz M
    Forensic Sci Int; 2011 Oct; 212(1-3):90-5. PubMed ID: 21696900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Mass Spectrometric Vapor Analysis To Improve Canine Explosive Detection Efficiency.
    Ong TH; Mendum T; Geurtsen G; Kelley J; Ostrinskaya A; Kunz R
    Anal Chem; 2017 Jun; 89(12):6482-6490. PubMed ID: 28598144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating headspace component vapor-time profiles by solid-phase microextraction with external sampling of an internal standard.
    MacCrehan W; Moore S; Schantz M
    Anal Chem; 2011 Nov; 83(22):8560-5. PubMed ID: 21961948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection.
    Perr JM; Furton KG; Almirall JR
    J Sep Sci; 2005 Feb; 28(2):177-83. PubMed ID: 15754826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Fooling fido"--chemical and behavioral studies of pseudo-explosive canine training aids.
    Kranz WD; Strange NA; Goodpaster JV
    Anal Bioanal Chem; 2014 Dec; 406(30):7817-25. PubMed ID: 25424725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and characterization of an electrostatic particle sampling system for the selective collection of trace explosives.
    Beer S; Müller G; Wöllenstein J
    Talanta; 2012 Jan; 89():441-7. PubMed ID: 22284515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of explosives in hair--part II: factors affecting sorption.
    Oxley JC; Smith JL; Kirschenbaum LJ; Marimganti S
    J Forensic Sci; 2007 Nov; 52(6):1291-6. PubMed ID: 18093063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic ring resonator sensors for rapid DNT vapor detection.
    Sun Y; Liu J; Frye-Mason G; Ja SJ; Thompson AK; Fan X
    Analyst; 2009 Jul; 134(7):1386-91. PubMed ID: 19562206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the volatile chemical markers of explosives using novel solid phase microextraction coupled to ion mobility spectrometry.
    Guerra P; Lai H; Almirall JR
    J Sep Sci; 2008 Aug; 31(15):2891-8. PubMed ID: 18666175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technical note: Headspace analysis of explosive compounds using a novel sampling chamber.
    DeGreeff L; Rogers DA; Katilie C; Johnson K; Rose-Pehrsson S
    Forensic Sci Int; 2015 Mar; 248():55-60. PubMed ID: 25596555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of dominant odor chemicals emanating from explosives for use in developing optimal training aid combinations and mimics for canine detection.
    Harper RJ; Almirall JR; Furton KG
    Talanta; 2005 Aug; 67(2):313-27. PubMed ID: 18970171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--preliminary study on TATP and PETN.
    Benson SJ; Lennard CJ; Maynard P; Hill DM; Andrew AS; Roux C
    Sci Justice; 2009 Jun; 49(2):81-6. PubMed ID: 19606585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer.
    Tomlinson-Phillips J; Wooten A; Kozole J; Deline J; Beresford P; Stairs J
    Talanta; 2014 Sep; 127():152-62. PubMed ID: 24913870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive detection of concealed explosives: depth profiling through opaque plastics by time-resolved Raman spectroscopy.
    Petterson IE; López-López M; García-Ruiz C; Gooijer C; Buijs JB; Ariese F
    Anal Chem; 2011 Nov; 83(22):8517-23. PubMed ID: 21967622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of an odor permeable membrane device for the storage of explosives and use as canine training aids.
    Davis K; Reavis M; Goodpaster JV
    J Forensic Sci; 2023 May; 68(3):815-827. PubMed ID: 36912418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproducible vapor-time profiles using solid-phase microextraction with an externally sampled internal standard.
    MacCrehan W; Moore S; Schantz M
    J Chromatogr A; 2012 Jun; 1244():28-36. PubMed ID: 22633864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards maintaining canine training aid integrity: Effects of environmental factors and operational use on the triacetone triperoxide polymer odor capture-and-release system.
    Cropper E; Riley P; Simon AG
    J Forensic Sci; 2024 May; 69(3):888-904. PubMed ID: 38528830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic headspace generation and quantitation of triacetone triperoxide vapor.
    Giordano BC; Lubrano AL; Field CR; Collins GE
    J Chromatogr A; 2014 Feb; 1331():38-43. PubMed ID: 24508355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliable, rapid and simple voltammetric detection of urea nitrate explosive.
    Cagan A; Lu D; Cizek K; La Belle J; Wang J
    Analyst; 2008 May; 133(5):585-7. PubMed ID: 18427677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of isomeric dinitrotoluenes and aminodinitrotoluenes using electrospray high resolution mass spectrometry.
    Schwarzenberg A; Dossmann H; Cole RB; Machuron-Mandard X; Tabet JC
    J Mass Spectrom; 2014 Dec; 49(12):1330-7. PubMed ID: 25476952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.