These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 21697090)

  • 1. Snapshots of enzymatic Baeyer-Villiger catalysis: oxygen activation and intermediate stabilization.
    Orru R; Dudek HM; Martinoli C; Torres Pazmiño DE; Royant A; Weik M; Fraaije MW; Mattevi A
    J Biol Chem; 2011 Aug; 286(33):29284-29291. PubMed ID: 21697090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a Baeyer-Villiger monooxygenase.
    Malito E; Alfieri A; Fraaije MW; Mattevi A
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13157-62. PubMed ID: 15328411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the structural basis of substrate preferences in Baeyer-Villiger monooxygenases: insight from steroid monooxygenase.
    Franceschini S; van Beek HL; Pennetta A; Martinoli C; Fraaije MW; Mattevi A
    J Biol Chem; 2012 Jun; 287(27):22626-34. PubMed ID: 22605340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The substrate-bound crystal structure of a Baeyer-Villiger monooxygenase exhibits a Criegee-like conformation.
    Yachnin BJ; Sprules T; McEvoy MB; Lau PC; Berghuis AM
    J Am Chem Soc; 2012 May; 134(18):7788-95. PubMed ID: 22506764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint functions of protein residues and NADP(H) in oxygen activation by flavin-containing monooxygenase.
    Orru R; Pazmiño DE; Fraaije MW; Mattevi A
    J Biol Chem; 2010 Nov; 285(45):35021-8. PubMed ID: 20807767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two structures of an N-hydroxylating flavoprotein monooxygenase: ornithine hydroxylase from Pseudomonas aeruginosa.
    Olucha J; Meneely KM; Chilton AS; Lamb AL
    J Biol Chem; 2011 Sep; 286(36):31789-98. PubMed ID: 21757711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic studies of cyclohexanone monooxygenase: chemical properties of intermediates involved in catalysis.
    Sheng D; Ballou DP; Massey V
    Biochemistry; 2001 Sep; 40(37):11156-67. PubMed ID: 11551214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the catalytic mechanism at the dawn of the Baeyer-Villiger monooxygenases.
    Yang G; Pećanac O; Wijma HJ; Rozeboom HJ; de Gonzalo G; Fraaije MW; Mascotti ML
    Cell Rep; 2024 May; 43(5):114130. PubMed ID: 38640062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The devil is in the details: The chemical basis and mechanistic versatility of flavoprotein monooxygenases.
    Toplak M; Matthews A; Teufel R
    Arch Biochem Biophys; 2021 Feb; 698():108732. PubMed ID: 33358998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of Two Native Baeyer-Villiger Monooxygenases for Asymmetric Synthesis of Bulky Chiral Sulfoxides.
    Zhang Y; Liu F; Xu N; Wu YQ; Zheng YC; Zhao Q; Lin G; Yu HL; Xu JH
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29752270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic mechanism of phenylacetone monooxygenase from Thermobifida fusca.
    Torres Pazmiño DE; Baas BJ; Janssen DB; Fraaije MW
    Biochemistry; 2008 Apr; 47(13):4082-93. PubMed ID: 18321069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations.
    Manenda MS; Picard MÈ; Zhang L; Cyr N; Zhu X; Barma J; Pascal JM; Couture M; Zhang C; Shi R
    J Biol Chem; 2020 Apr; 295(14):4709-4722. PubMed ID: 32111738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of cyclohexanone monooxygenase reveal complex domain movements and a sliding cofactor.
    Mirza IA; Yachnin BJ; Wang S; Grosse S; Bergeron H; Imura A; Iwaki H; Hasegawa Y; Lau PC; Berghuis AM
    J Am Chem Soc; 2009 Jul; 131(25):8848-54. PubMed ID: 19385644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the coenzyme specificity of phenylacetone monooxygenase from Thermobifida fusca.
    Dudek HM; Torres Pazmiño DE; Rodríguez C; de Gonzalo G; Gotor V; Fraaije MW
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1135-43. PubMed ID: 20703875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights in the kinetic mechanism of the eukaryotic Baeyer-Villiger monooxygenase BVMOAf1 from Aspergillus fumigatus Af293.
    Mascotti ML; Kurina-Sanz M; Juri Ayub M; Fraaije MW
    Biochimie; 2014 Dec; 107 Pt B():270-6. PubMed ID: 25230086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switch in Cofactor Specificity of a Baeyer-Villiger Monooxygenase.
    Beier A; Bordewick S; Genz M; Schmidt S; van den Bergh T; Peters C; Joosten HJ; Bornscheuer UT
    Chembiochem; 2016 Dec; 17(24):2312-2315. PubMed ID: 27735116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Baeyer-Villiger monooxygenases in the biosynthesis of microbial secondary metabolites].
    Li Y; Yang X; Deng Z; Zhu D
    Sheng Wu Gong Cheng Xue Bao; 2019 Mar; 35(3):351-362. PubMed ID: 30912344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The prodrug activator EtaA from Mycobacterium tuberculosis is a Baeyer-Villiger monooxygenase.
    Fraaije MW; Kamerbeek NM; Heidekamp AJ; Fortin R; Janssen DB
    J Biol Chem; 2004 Jan; 279(5):3354-60. PubMed ID: 14610090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent developments in the application of Baeyer-Villiger monooxygenases as biocatalysts.
    de Gonzalo G; Mihovilovic MD; Fraaije MW
    Chembiochem; 2010 Nov; 11(16):2208-31. PubMed ID: 20936617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamics of the flavin, NADPH, and active site loops determine the mechanism of activation of class B flavin-dependent monooxygenases.
    Pierdominici-Sottile G; Palma J; Ferrelli ML; Sobrado P
    Protein Sci; 2024 Apr; 33(4):e4935. PubMed ID: 38501462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.