These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21697168)

  • 1. Modelling human balance using switched systems with linear feedback control.
    Kowalczyk P; Glendinning P; Brown M; Medrano-Cerda G; Dallali H; Shapiro J
    J R Soc Interface; 2012 Feb; 9(67):234-45. PubMed ID: 21697168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple roles of active stiffness in upright balance and multidirectional sway.
    Bakshi A; DiZio P; Lackner JR
    J Neurophysiol; 2020 Dec; 124(6):1995-2011. PubMed ID: 32997568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the neuro-mechanics of human balance when recovering from a fall: a continuous-time approach.
    Cerda-Lugo A; González A; Cardenas A; Piovesan D
    Biomed Eng Online; 2020 Aug; 19(1):67. PubMed ID: 32867771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinforcement learning for stabilizing an inverted pendulum naturally leads to intermittent feedback control as in human quiet standing.
    Michimoto K; Suzuki Y; Kiyono K; Kobayashi Y; Morasso P; Nomura T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():37-40. PubMed ID: 28268275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free Energy Principle in Human Postural Control System: Skin Stretch Feedback Reduces the Entropy.
    Hur P; Pan YT; DeBuys C
    Sci Rep; 2019 Nov; 9(1):16870. PubMed ID: 31727928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-joint model of quiet, upright stance accounts for the "uncontrolled manifold" structure of joint variance.
    Reimann H; Schöner G
    Biol Cybern; 2017 Dec; 111(5-6):389-403. PubMed ID: 28924748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling human postural sway using an intermittent control and hemodynamic perturbations.
    Nomura T; Oshikawa S; Suzuki Y; Kiyono K; Morasso P
    Math Biosci; 2013 Sep; 245(1):86-95. PubMed ID: 23435118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complexity and dynamics of switched human balance control during quiet standing.
    Nema S; Kowalczyk P; Loram I
    Biol Cybern; 2015 Oct; 109(4-5):469-78. PubMed ID: 26249846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postural control during kneeling.
    Mezzarane RA; Kohn AF
    Exp Brain Res; 2008 May; 187(3):395-405. PubMed ID: 18283443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the underlying systems involved in standing balance: the additional value of electromyography in system identification and parameter estimation.
    Pasma JH; van Kordelaar J; de Kam D; Weerdesteyn V; Schouten AC; van der Kooij H
    J Neuroeng Rehabil; 2017 Sep; 14(1):97. PubMed ID: 28915821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilizing PID controllers for a single-link biomechanical model with position, velocity, and force feedback.
    Iqbal K; Roy A
    J Biomech Eng; 2004 Dec; 126(6):838-43. PubMed ID: 15796343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of a double inverted pendulum model during human quiet stance with continuous delay feedback control.
    Suzuki Y; Nomura T; Morasso P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7450-3. PubMed ID: 22256061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model.
    Elias LA; Watanabe RN; Kohn AF
    PLoS Comput Biol; 2014 Nov; 10(11):e1003944. PubMed ID: 25393548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The time-delayed inverted pendulum: implications for human balance control.
    Milton J; Cabrera JL; Ohira T; Tajima S; Tonosaki Y; Eurich CW; Campbell SA
    Chaos; 2009 Jun; 19(2):026110. PubMed ID: 19566270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models of Postural Control: Shared Variance in Joint and COM Motions.
    Kilby MC; Molenaar PC; Newell KM
    PLoS One; 2015; 10(5):e0126379. PubMed ID: 25973896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation to Coriolis force perturbations of postural sway requires an asymmetric two-leg model.
    Bakshi A; DiZio P; Lackner JR
    J Neurophysiol; 2019 Jun; 121(6):2042-2060. PubMed ID: 30943111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body sway during quiet standing: is it the residual chattering of an intermittent stabilization process?
    Bottaro A; Casadio M; Morasso PG; Sanguineti V
    Hum Mov Sci; 2005 Aug; 24(4):588-615. PubMed ID: 16143414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bifurcation and stability analysis in musculoskeletal systems: a study in human stance.
    Verdaasdonk BW; Koopman HF; van Gils SA; van der Helm FC
    Biol Cybern; 2004 Jul; 91(1):48-62. PubMed ID: 15316784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling 3D control of upright stance using an optimal control strategy.
    Qu X; Nussbaum MA
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1053-63. PubMed ID: 21598131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of intermittent feedback control on robustness of human-like postural control system.
    Tanabe H; Fujii K; Suzuki Y; Kouzaki M
    Sci Rep; 2016 Mar; 6():22446. PubMed ID: 26931281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.