These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 21697364)

  • 21. Spindle oscillations during cortical spreading depression in naturally sleeping cats.
    Contreras D; Destexhe A; Steriade M
    Neuroscience; 1997 Apr; 77(4):933-6. PubMed ID: 9130774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance.
    Steriade M
    Cereb Cortex; 1997 Sep; 7(6):583-604. PubMed ID: 9276182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations.
    Steriade M; Timofeev I
    Neuron; 2003 Feb; 37(4):563-76. PubMed ID: 12597855
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatiotemporal patterns of sleep spindle activity in human anterior thalamus and cortex.
    Bernhard H; Schaper FLWVJ; Janssen MLF; Gommer ED; Jansma BM; Van Kranen-Mastenbroek V; Rouhl RPW; de Weerd P; Reithler J; Roberts MJ;
    Neuroimage; 2022 Nov; 263():119625. PubMed ID: 36103955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks.
    Steriade M; Contreras D; Curró Dossi R; Nuñez A
    J Neurosci; 1993 Aug; 13(8):3284-99. PubMed ID: 8340808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cortically-induced coherence of a thalamic-generated oscillation.
    Destexhe A; Contreras D; Steriade M
    Neuroscience; 1999; 92(2):427-43. PubMed ID: 10408595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unified thalamic model generates multiple distinct oscillations with state-dependent entrainment by stimulation.
    Li G; Henriquez CS; Fröhlich F
    PLoS Comput Biol; 2017 Oct; 13(10):e1005797. PubMed ID: 29073146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordination of cortical and thalamic activity during non-REM sleep in humans.
    Mak-McCully RA; Rolland M; Sargsyan A; Gonzalez C; Magnin M; Chauvel P; Rey M; Bastuji H; Halgren E
    Nat Commun; 2017 May; 8():15499. PubMed ID: 28541306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Significant thalamocortical coherence of sleep spindle, theta, delta, and slow oscillations in NREM sleep: recordings from the human thalamus.
    Tsai YT; Chan HL; Lee ST; Tu PH; Chang BL; Wu T
    Neurosci Lett; 2010 Nov; 485(3):173-7. PubMed ID: 20837102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coalescence of sleep rhythms and their chronology in corticothalamic networks.
    Steriade M; Amzica F
    Sleep Res Online; 1998; 1(1):1-10. PubMed ID: 11382851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ongoing network state controls the length of sleep spindles via inhibitory activity.
    Barthó P; Slézia A; Mátyás F; Faradzs-Zade L; Ulbert I; Harris KD; Acsády L
    Neuron; 2014 Jun; 82(6):1367-79. PubMed ID: 24945776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sleep Spindles: Where They Come From, What They Do.
    Lüthi A
    Neuroscientist; 2014 Jun; 20(3):243-56. PubMed ID: 23981852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recordings, behaviour and models related to corticothalamic feedback.
    Gerstein GL; Kirkland KL; Musial PG; Talwar SK
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1835-41. PubMed ID: 12626016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptation in the corticothalamic loop: computational prospects of tuning the senses.
    Hillenbrand U; van Hemmen JL
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1859-67. PubMed ID: 12626019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced sleep spindle activity in schizophrenia patients.
    Ferrarelli F; Huber R; Peterson MJ; Massimini M; Murphy M; Riedner BA; Watson A; Bria P; Tononi G
    Am J Psychiatry; 2007 Mar; 164(3):483-92. PubMed ID: 17329474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo.
    Contreras D; Destexhe A; Steriade M
    J Neurophysiol; 1997 Jul; 78(1):335-50. PubMed ID: 9242284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The activity of thalamus and cerebral cortex neurons in rabbits during "slow wave-spindle" EEG complexes.
    Burikov AA; Bereshpolova YuI
    Neurosci Behav Physiol; 1999; 29(2):143-9. PubMed ID: 10432501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Slow-wave oscillations in a corticothalamic model of sleep and wake.
    Zhao X; Kim JW; Robinson PA
    J Theor Biol; 2015 Apr; 370():93-102. PubMed ID: 25659479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer simulation of the pacemaker oscillations of thalamocortical cells.
    Tóth T; Crunelli V
    Neuroreport; 1992 Jan; 3(1):65-8. PubMed ID: 1377043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Contribution of Thalamocortical Core and Matrix Pathways to Sleep Spindles.
    Piantoni G; Halgren E; Cash SS
    Neural Plast; 2016; 2016():3024342. PubMed ID: 27144033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.