These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 21697391)

  • 1. Modular realignment of entorhinal grid cell activity as a basis for hippocampal remapping.
    Monaco JD; Abbott LF
    J Neurosci; 2011 Jun; 31(25):9414-25. PubMed ID: 21697391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hippocampal remapping and grid realignment in entorhinal cortex.
    Fyhn M; Hafting T; Treves A; Moser MB; Moser EI
    Nature; 2007 Mar; 446(7132):190-4. PubMed ID: 17322902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Place and Grid Cells in a Loop: Implications for Memory Function and Spatial Coding.
    RennĂ³-Costa C; Tort ABL
    J Neurosci; 2017 Aug; 37(34):8062-8076. PubMed ID: 28701481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous Dynamics of Hippocampal Place Fields in a Model of Combinatorial Competition among Stable Inputs.
    Savelli F
    J Neurosci; 2024 Mar; 44(13):. PubMed ID: 38316560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex accounts for artificial remapping and grid cell field-to-field variability.
    Agmon H; Burak Y
    Elife; 2020 Aug; 9():. PubMed ID: 32779570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remapping and realignment in the human hippocampal formation predict context-dependent spatial behavior.
    Julian JB; Doeller CF
    Nat Neurosci; 2021 Jun; 24(6):863-872. PubMed ID: 33859438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Mechanism for the Grid-to-Place Cell Transformation Revealed by Transgenic Depolarization of Medial Entorhinal Cortex Layer II.
    Kanter BR; Lykken CM; Avesar D; Weible A; Dickinson J; Dunn B; Borgesius NZ; Roudi Y; Kentros CG
    Neuron; 2017 Mar; 93(6):1480-1492.e6. PubMed ID: 28334610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How heterogeneous place cell responding arises from homogeneous grids--a contextual gating hypothesis.
    Hayman RM; Jeffery KJ
    Hippocampus; 2008; 18(12):1301-13. PubMed ID: 19021264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hippocampal Global Remapping Can Occur without Input from the Medial Entorhinal Cortex.
    Schlesiger MI; Boublil BL; Hales JB; Leutgeb JK; Leutgeb S
    Cell Rep; 2018 Mar; 22(12):3152-3159. PubMed ID: 29562172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of grid cells involving extra hippocampal path integration, and the hippocampal loop.
    Gaussier P; Banquet JP; Sargolini F; Giovannangeli C; Save E; Poucet B
    J Integr Neurosci; 2007 Sep; 6(3):447-76. PubMed ID: 17933021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hippocampal remapping is constrained by sparseness rather than capacity.
    Kammerer A; Leibold C
    PLoS Comput Biol; 2014 Dec; 10(12):e1003986. PubMed ID: 25474570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of networks that produce the transformation from grid cells to place cells.
    Cheng S; Frank LM
    Neuroscience; 2011 Dec; 197():293-306. PubMed ID: 21963867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of rate remapping in the dentate gyrus.
    RennĂ³-Costa C; Lisman JE; Verschure PF
    Neuron; 2010 Dec; 68(6):1051-8. PubMed ID: 21172608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Tolman-Eichenbaum Machine: Unifying Space and Relational Memory through Generalization in the Hippocampal Formation.
    Whittington JCR; Muller TH; Mark S; Chen G; Barry C; Burgess N; Behrens TEJ
    Cell; 2020 Nov; 183(5):1249-1263.e23. PubMed ID: 33181068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial scale and place field stability in a grid-to-place cell model of the dorsoventral axis of the hippocampus.
    Lyttle D; Gereke B; Lin KK; Fellous JM
    Hippocampus; 2013 Aug; 23(8):729-44. PubMed ID: 23576417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of boundary removal on the spatial representations of the medial entorhinal cortex.
    Savelli F; Yoganarasimha D; Knierim JJ
    Hippocampus; 2008; 18(12):1270-82. PubMed ID: 19021262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and memory circuits in the medial entorhinal cortex.
    Sasaki T; Leutgeb S; Leutgeb JK
    Curr Opin Neurobiol; 2015 Jun; 32():16-23. PubMed ID: 25463560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporally random and diverse grid cell spike patterns contribute to the transformation of grid cell to place cell in a neural network model.
    Park SW; Jang HJ; Kim M; Kwag J
    PLoS One; 2019; 14(11):e0225100. PubMed ID: 31725775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations.
    Grossberg S; Pilly PK
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120524. PubMed ID: 24366136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory Connectivity Dominates the Fan Cell Network in Layer II of Lateral Entorhinal Cortex.
    Nilssen ES; Jacobsen B; Fjeld G; Nair RR; Blankvoort S; Kentros C; Witter MP
    J Neurosci; 2018 Nov; 38(45):9712-9727. PubMed ID: 30249791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.