BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 21697425)

  • 1. Transepithelial D-glucose and D-fructose transport across the American lobster, Homarus americanus, intestine.
    Obi IE; Sterling KM; Ahearn GA
    J Exp Biol; 2011 Jul; 214(Pt 14):2337-44. PubMed ID: 21697425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a novel sodium-dependent fructose transport activity in the hepatopancreas of the Atlantic lobster Homarus americanus.
    Sterling KM; Cheeseman CI; Ahearn GA
    J Exp Biol; 2009 Jun; 212(Pt 12):1912-20. PubMed ID: 19483009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption of tetraethylammonium (TEA+) by perfused lobster intestine.
    Piersol MC; Sterling KM; Ahearn GA
    J Exp Zool A Ecol Genet Physiol; 2007 Mar; 307(3):176-86. PubMed ID: 17397071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of a putative disaccharide membrane transporter in crustacean intestine.
    Likely R; Johnson E; Ahearn GA
    J Comp Physiol B; 2015 Feb; 185(2):173-83. PubMed ID: 25416426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3H-L-leucine transport by the promiscuous crustacean dipeptide-like cotransporter.
    Obi I; Wells AL; Ortega P; Patel D; Farah L; Zanotto FP; Ahearn GA
    J Exp Zool A Ecol Genet Physiol; 2011 Oct; 315(8):465-75. PubMed ID: 21732547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C.
    Helliwell PA; Richardson M; Affleck J; Kellett GL
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):149-54. PubMed ID: 10926838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normal kinetics of intestinal glucose absorption in the absence of GLUT2: evidence for a transport pathway requiring glucose phosphorylation and transfer into the endoplasmic reticulum.
    Stümpel F; Burcelin R; Jungermann K; Thorens B
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11330-5. PubMed ID: 11562503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diet-induced epigenetic regulation in vivo of the intestinal fructose transporter Glut5 during development of rat small intestine.
    Suzuki T; Douard V; Mochizuki K; Goda T; Ferraris RP
    Biochem J; 2011 Apr; 435(1):43-53. PubMed ID: 21222652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transepithelial transports of rare sugar D-psicose in human intestine.
    Hishiike T; Ogawa M; Hayakawa S; Nakajima D; O'Charoen S; Ooshima H; Sun Y
    J Agric Food Chem; 2013 Jul; 61(30):7381-6. PubMed ID: 23844903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: a study in GLUT2-null mice.
    Gouyon F; Caillaud L; Carriere V; Klein C; Dalet V; Citadelle D; Kellett GL; Thorens B; Leturque A; Brot-Laroche E
    J Physiol; 2003 Nov; 552(Pt 3):823-32. PubMed ID: 12937289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3H-L-histidine and 65Zn(2+) are cotransported by a dipeptide transport system in intestine of lobster Homarus americanus.
    Conrad EM; Ahearn GA
    J Exp Biol; 2005 Jan; 208(Pt 2):287-96. PubMed ID: 15634848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transepithelial transport of zinc and L-histidine across perfused intestine of American lobster, Homarus americanus.
    Conrad EM; Ahearn GA
    J Comp Physiol B; 2007 Apr; 177(3):297-307. PubMed ID: 17106740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells.
    Hopfer U; Sigrist-Nelson K; Ammann E; Murer H
    J Cell Physiol; 1976 Dec; 89(4):805-10. PubMed ID: 137908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active transport of sugars by the intestine of snail (Cryptomphalus hortensis Müller).
    Barber A; Jordana R; Ponz F
    Rev Esp Fisiol; 1975 Jun; 31(2):119-24. PubMed ID: 1162166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intestinal fructose transport and malabsorption in humans.
    Jones HF; Butler RN; Brooks DA
    Am J Physiol Gastrointest Liver Physiol; 2011 Feb; 300(2):G202-6. PubMed ID: 21148401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for carrier-mediated uptake and efflux of sugars at the serosal side of the rat intestinal mucosa in vitro.
    Bronk JR; Ingham PA
    J Physiol; 1976 Feb; 255(2):481-95. PubMed ID: 1255529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein kinases, TNF-{alpha}, and proteasome contribute in the inhibition of fructose intestinal transport by sepsis in vivo.
    García-Herrera J; Marca MC; Brot-Laroche E; Guillén N; Acin S; Navarro MA; Osada J; Rodríguez-Yoldi MJ
    Am J Physiol Gastrointest Liver Physiol; 2008 Jan; 294(1):G155-64. PubMed ID: 17962360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of tumor necrosis factor-alpha on D-fructose intestinal transport in rabbits.
    García-Herrera J; Navarro MA; Marca MC; de la Osada J; Rodríguez-Yoldi MJ
    Cytokine; 2004 Jan; 25(1):21-30. PubMed ID: 14687582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-associated changes in intestinal fructose uptake are not explained by alterations in the abundance of GLUT5 or GLUT2.
    Drozdowski LA; Woudstra TD; Wild GE; Clandinin MT; Thomson AB
    J Nutr Biochem; 2004 Oct; 15(10):630-7. PubMed ID: 15542355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide involved in the IL-1β-induced inhibition of fructose intestinal transport.
    García-Barrios A; Guillén N; Gascón S; Osada J; Vazquez CM; Miguel-Carrasco JL; Rodríguez-Yoldi MJ
    J Cell Biochem; 2010 Dec; 111(5):1321-9. PubMed ID: 20803526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.