These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Insights into the structural organization of the I1 inner arm dynein from a domain analysis of the 1beta dynein heavy chain. Perrone CA; Myster SH; Bower R; O'Toole ET; Porter ME Mol Biol Cell; 2000 Jul; 11(7):2297-313. PubMed ID: 10888669 [TBL] [Abstract][Full Text] [Related]
23. Efficient spatiotemporal analysis of the flagellar waveform of Chlamydomonas reinhardtii. Bayly PV; Lewis BL; Kemp PS; Pless RB; Dutcher SK Cytoskeleton (Hoboken); 2010 Jan; 67(1):56-69. PubMed ID: 20169530 [TBL] [Abstract][Full Text] [Related]
24. Flexural Rigidity and Shear Stiffness of Flagella Estimated from Induced Bends and Counterbends. Xu G; Wilson KS; Okamoto RJ; Shao JY; Dutcher SK; Bayly PV Biophys J; 2016 Jun; 110(12):2759-2768. PubMed ID: 27332134 [TBL] [Abstract][Full Text] [Related]
25. Tubulin polyglutamylation regulates flagellar motility by controlling a specific inner-arm dynein that interacts with the dynein regulatory complex. Kubo T; Yagi T; Kamiya R Cytoskeleton (Hoboken); 2012 Dec; 69(12):1059-68. PubMed ID: 23047862 [TBL] [Abstract][Full Text] [Related]
26. The I1 dynein-associated tether and tether head complex is a conserved regulator of ciliary motility. Fu G; Wang Q; Phan N; Urbanska P; Joachimiak E; Lin J; Wloga D; Nicastro D Mol Biol Cell; 2018 May; 29(9):1048-1059. PubMed ID: 29514928 [TBL] [Abstract][Full Text] [Related]
27. Association of Lis1 with outer arm dynein is modulated in response to alterations in flagellar motility. Rompolas P; Patel-King RS; King SM Mol Biol Cell; 2012 Sep; 23(18):3554-65. PubMed ID: 22855525 [TBL] [Abstract][Full Text] [Related]
28. Phototactic activity in Chlamydomonas 'non-phototactic' mutants deficient in Ca2+-dependent control of flagellar dominance or in inner-arm dynein. Okita N; Isogai N; Hirono M; Kamiya R; Yoshimura K J Cell Sci; 2005 Feb; 118(Pt 3):529-37. PubMed ID: 15657081 [TBL] [Abstract][Full Text] [Related]
29. Keeping an eye on I1: I1 dynein as a model for flagellar dynein assembly and regulation. Wirschell M; Hendrickson T; Sale WS Cell Motil Cytoskeleton; 2007 Aug; 64(8):569-79. PubMed ID: 17549744 [TBL] [Abstract][Full Text] [Related]
30. Regulation of Chlamydomonas flagellar dynein by an axonemal protein kinase. Howard DR; Habermacher G; Glass DB; Smith EF; Sale WS J Cell Biol; 1994 Dec; 127(6 Pt 1):1683-92. PubMed ID: 7798320 [TBL] [Abstract][Full Text] [Related]
31. Dynein-deficient flagella respond to increased viscosity with contrasting changes in power and recovery strokes. Wilson KS; Gonzalez O; Dutcher SK; Bayly PV Cytoskeleton (Hoboken); 2015 Sep; 72(9):477-90. PubMed ID: 26314933 [TBL] [Abstract][Full Text] [Related]
32. Domains in the 1alpha dynein heavy chain required for inner arm assembly and flagellar motility in Chlamydomonas. Myster SH; Knott JA; Wysocki KM; O'Toole E; Porter ME J Cell Biol; 1999 Aug; 146(4):801-18. PubMed ID: 10459015 [TBL] [Abstract][Full Text] [Related]
33. Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement. Baron DM; Kabututu ZP; Hill KL J Cell Sci; 2007 May; 120(Pt 9):1513-20. PubMed ID: 17405810 [TBL] [Abstract][Full Text] [Related]
34. Regulation of flagellar dynein by the axonemal central apparatus. Smith EF Cell Motil Cytoskeleton; 2002 May; 52(1):33-42. PubMed ID: 11977081 [TBL] [Abstract][Full Text] [Related]
35. The CSC is required for complete radial spoke assembly and wild-type ciliary motility. Dymek EE; Heuser T; Nicastro D; Smith EF Mol Biol Cell; 2011 Jul; 22(14):2520-31. PubMed ID: 21613541 [TBL] [Abstract][Full Text] [Related]
36. An axonemal dynein particularly important for flagellar movement at high viscosity. Implications from a new Chlamydomonas mutant deficient in the dynein heavy chain gene DHC9. Yagi T; Minoura I; Fujiwara A; Saito R; Yasunaga T; Hirono M; Kamiya R J Biol Chem; 2005 Dec; 280(50):41412-20. PubMed ID: 16236707 [TBL] [Abstract][Full Text] [Related]
37. Knockdown of Inner Arm Protein IC138 in Trypanosoma brucei Causes Defective Motility and Flagellar Detachment. Wilson CS; Chang AJ; Greene R; Machado S; Parsons MW; Takats TA; Zambetti LJ; Springer AL PLoS One; 2015; 10(11):e0139579. PubMed ID: 26555902 [TBL] [Abstract][Full Text] [Related]
38. Microtubule sliding in flagellar axonemes of Chlamydomonas mutants missing inner- or outer-arm dynein: velocity measurements on new types of mutants by an improved method. Kurimoto E; Kamiya R Cell Motil Cytoskeleton; 1991; 19(4):275-81. PubMed ID: 1834352 [TBL] [Abstract][Full Text] [Related]
39. Reversion analysis of dynein intermediate chain function. Mitchell DR; Kang Y J Cell Sci; 1993 Aug; 105 ( Pt 4)():1069-78. PubMed ID: 8227195 [TBL] [Abstract][Full Text] [Related]
40. Mechanical properties of inner-arm dynein-f (dynein I1) studied with in vitro motility assays. Kotani N; Sakakibara H; Burgess SA; Kojima H; Oiwa K Biophys J; 2007 Aug; 93(3):886-94. PubMed ID: 17496036 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]