These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21697579)

  • 21. Ultranarrow heterojunctions of armchair-graphene nanoribbons as resonant-tunnelling devices.
    Sánchez-Ochoa F; Zhang J; Du Y; Huang Z; Canto G; Springborg M; Cocoletzi GH
    Phys Chem Chem Phys; 2019 Dec; 21(45):24867-24875. PubMed ID: 31517350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined effect of quantum size and disorder in a two-dimensional armchair graphene nanoribbon with s-wave pairing.
    Qin ZJ; Zhang GP
    J Phys Condens Matter; 2011 Jul; 23(29):295301. PubMed ID: 21697585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport properties of armchair graphene nanoribbon junctions between graphene electrodes.
    Motta C; Sánchez-Portal D; Trioni MI
    Phys Chem Chem Phys; 2012 Aug; 14(30):10683-9. PubMed ID: 22743740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of uniaxial strain on graphene nanoribbon carrier statistic.
    Johari Z; Ismail R
    Nanoscale Res Lett; 2013 Nov; 8(1):479. PubMed ID: 24229375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beryllium and boron decoration forms planar tetracoordinate carbon strips at the edge of graphene nanoribbons.
    Xiao B; Ding YH; Sun CC
    Phys Chem Chem Phys; 2011 Feb; 13(7):2732-7. PubMed ID: 21152527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonon-drag thermopower and thermoelectric performance of MoS
    Phuc HV; Kubakaddi SS; Dinh L; Bich TN; Hieu NN
    J Phys Condens Matter; 2022 Jun; 34(31):. PubMed ID: 35636387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving gas sensing properties of armchair graphene nanoribbons by oxygen-hydrogen terminated edges.
    Jamalzadeh Kheirabadi S; Ghayour R; Sanaee M
    Nanotechnology; 2019 Oct; 30(43):435501. PubMed ID: 31300615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spin thermopower and thermoconductance in a ferromagnetic graphene nanoribbon.
    Cheng SG
    J Phys Condens Matter; 2012 Sep; 24(38):385302. PubMed ID: 22945502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Al2C Monolayer Sheet and Nanoribbons with Unique Direction-Dependent Acoustic-Phonon-Limited Carrier Mobility and Carrier Polarity.
    Xu Y; Dai J; Zeng XC
    J Phys Chem Lett; 2016 Jan; 7(2):302-7. PubMed ID: 26722716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption of ammonia on ZrO
    Ayesh AI; El-Muraikhi MD
    J Mol Model; 2022 Dec; 29(1):15. PubMed ID: 36544072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-surface synthesis of rylene-type graphene nanoribbons.
    Zhang H; Lin H; Sun K; Chen L; Zagranyarski Y; Aghdassi N; Duhm S; Li Q; Zhong D; Li Y; Müllen K; Fuchs H; Chi L
    J Am Chem Soc; 2015 Apr; 137(12):4022-5. PubMed ID: 25775004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-parameter charge pump in a zigzag graphene nanoribbon.
    Gu Y; Yang YH; Wang J; Chan KS
    J Phys Condens Matter; 2009 Oct; 21(40):405301. PubMed ID: 21832408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities.
    Efetov DK; Kim P
    Phys Rev Lett; 2010 Dec; 105(25):256805. PubMed ID: 21231611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermoelectric transport properties of armchair graphene nanoribbon heterostructures.
    Almeida PA; Martins GB
    J Phys Condens Matter; 2022 Jun; 34(33):. PubMed ID: 35675807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Half-filled energy bands induced negative differential resistance in nitrogen-doped graphene.
    Li XF; Lian KY; Qiu Q; Luo Y
    Nanoscale; 2015 Mar; 7(9):4156-62. PubMed ID: 25665635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling.
    Wakai T; Sakamoto S; Tomiya M
    J Phys Condens Matter; 2018 Jul; 30(26):265302. PubMed ID: 29770774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electro-oxidized epitaxial graphene channel field-effect transistors with single-walled carbon nanotube thin film gate electrode.
    Ramesh P; Itkis ME; Bekyarova E; Wang F; Niyogi S; Chi X; Berger C; de Heer W; Haddon RC
    J Am Chem Soc; 2010 Oct; 132(41):14429-36. PubMed ID: 20873843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coulomb Drag between a Carbon Nanotube and Monolayer Graphene.
    Anderson L; Cheng A; Taniguchi T; Watanabe K; Kim P
    Phys Rev Lett; 2021 Dec; 127(25):257701. PubMed ID: 35029442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and electronic properties of graphene nanotube-nanoribbon hybrids.
    Lee CH; Yang CK; Lin MF; Chang CP; Su WS
    Phys Chem Chem Phys; 2011 Mar; 13(9):3925-31. PubMed ID: 21210053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.