These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Li X; Wang X; Zhang L; Lee S; Dai H Science; 2008 Feb; 319(5867):1229-32. PubMed ID: 18218865 [TBL] [Abstract][Full Text] [Related]
43. Admittance of T-stub graphene nanoribbon structure. Lan J; Ye EJ; Sui WQ; Zhao X Phys Chem Chem Phys; 2013 Jan; 15(2):671-9. PubMed ID: 23187783 [TBL] [Abstract][Full Text] [Related]
44. Electronic structure and transport of a carbon chain between graphene nanoribbon leads. Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839 [TBL] [Abstract][Full Text] [Related]
45. Hybrid nanotube-graphene junctions: spin degeneracy breaking and tunable electronic structure. Qu ZB; Gu L; Li M; Shi G; Zhuang GL Phys Chem Chem Phys; 2013 Dec; 15(46):20281-7. PubMed ID: 24166658 [TBL] [Abstract][Full Text] [Related]
46. Temperature and layer number dependence of the G and 2D phonon energy and damping in graphene. Apostolov AT; Apostolova IN; Wesselinowa JM J Phys Condens Matter; 2012 Jun; 24(23):235401. PubMed ID: 22569003 [TBL] [Abstract][Full Text] [Related]
47. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons. Kumar SB; Jalil MB; Tan SG; Liang G J Phys Condens Matter; 2010 Sep; 22(37):375303. PubMed ID: 21403192 [TBL] [Abstract][Full Text] [Related]
48. Energetics and electronic structure of encapsulated graphene nanoribbons in carbon nanotube. Mandal B; Sarkar S; Sarkar P J Phys Chem A; 2013 Sep; 117(36):8568-75. PubMed ID: 23675973 [TBL] [Abstract][Full Text] [Related]
49. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Song JC; Reizer MY; Levitov LS Phys Rev Lett; 2012 Sep; 109(10):106602. PubMed ID: 23005313 [TBL] [Abstract][Full Text] [Related]
50. Finite size effects on the gate leakage current in graphene nanoribbon field-effect transistors. Mao LF Nanotechnology; 2009 Jul; 20(27):275203. PubMed ID: 19528675 [TBL] [Abstract][Full Text] [Related]
51. Unique chemical reactivity of a graphene nanoribbon's zigzag edge. Jiang DE; Sumpter BG; Dai S J Chem Phys; 2007 Apr; 126(13):134701. PubMed ID: 17430050 [TBL] [Abstract][Full Text] [Related]
52. Mapping the Slow Stabilization of End States with Length along a Laterally Extended Graphene Nanoribbon. Thupakula U; Soe WH; Castro-Esteban J; Al Saati A; Trinquier G; Bouju X; Peña D; Joachim C J Phys Chem Lett; 2024 Sep; 15(35):8933-8941. PubMed ID: 39173057 [TBL] [Abstract][Full Text] [Related]
53. Thermal AND Gate Using a Monolayer Graphene Nanoribbon. Pal S; Puri IK Small; 2015 Jun; 11(24):2910-7. PubMed ID: 25689108 [TBL] [Abstract][Full Text] [Related]
54. Electron-phonon interaction and transport in semiconducting carbon nanotubes. Perebeinos V; Tersoff J; Avouris P Phys Rev Lett; 2005 Mar; 94(8):086802. PubMed ID: 15783915 [TBL] [Abstract][Full Text] [Related]
55. Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons. Senturk AE; Oktem AS; Konukman AES J Mol Model; 2017 Aug; 23(8):247. PubMed ID: 28766111 [TBL] [Abstract][Full Text] [Related]