These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 21697585)

  • 1. Combined effect of quantum size and disorder in a two-dimensional armchair graphene nanoribbon with s-wave pairing.
    Qin ZJ; Zhang GP
    J Phys Condens Matter; 2011 Jul; 23(29):295301. PubMed ID: 21697585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport properties of armchair graphene nanoribbon junctions between graphene electrodes.
    Motta C; Sánchez-Portal D; Trioni MI
    Phys Chem Chem Phys; 2012 Aug; 14(30):10683-9. PubMed ID: 22743740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite size effects on the gate leakage current in graphene nanoribbon field-effect transistors.
    Mao LF
    Nanotechnology; 2009 Jul; 20(27):275203. PubMed ID: 19528675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon-drag thermopower in an armchair graphene nanoribbon.
    Bhargavi KS; Kubakaddi SS
    J Phys Condens Matter; 2011 Jul; 23(27):275303. PubMed ID: 21697579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of disorder with long-range correlation on transport in graphene nanoribbon.
    Zhang GP; Gao M; Zhang YY; Liu N; Qin ZJ; Shangguan MH
    J Phys Condens Matter; 2012 Jun; 24(23):235303. PubMed ID: 22576011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum transport through a graphene nanoribbon-superconductor junction.
    Sun QF; Xie XC
    J Phys Condens Matter; 2009 Aug; 21(34):344204. PubMed ID: 21715779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistent currents in a graphene ring with armchair edges.
    Huang BL; Chang MC; Mou CY
    J Phys Condens Matter; 2012 Jun; 24(24):245304. PubMed ID: 22617621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imbalanced superfluid state in an annular disk.
    Ye F; Chen Y; Wang ZD; Zhang FC
    J Phys Condens Matter; 2009 Sep; 21(35):355701. PubMed ID: 21828640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ
    J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indirect RKKY interaction between localized magnetic moments in armchair graphene nanoribbons.
    Szałowski K
    J Phys Condens Matter; 2013 Apr; 25(16):166001. PubMed ID: 23552186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of defects on the conductance of graphene nanoribbons.
    Gorjizadeh N; Farajian AA; Kawazoe Y
    Nanotechnology; 2009 Jan; 20(1):015201. PubMed ID: 19417243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Fibonacci modulation on superconductivity.
    Gupta S; Sil S; Bhattacharyya B
    J Phys Condens Matter; 2006 Feb; 18(6):1987-97. PubMed ID: 21697571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and electronic properties of graphene nanotube-nanoribbon hybrids.
    Lee CH; Yang CK; Lin MF; Chang CP; Su WS
    Phys Chem Chem Phys; 2011 Mar; 13(9):3925-31. PubMed ID: 21210053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical predictions of size-dependent carrier mobility and polarity in graphene.
    Long MQ; Tang L; Wang D; Wang L; Shuai Z
    J Am Chem Soc; 2009 Dec; 131(49):17728-9. PubMed ID: 19924857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental observation of the quantum Hall effect and Berry's phase in graphene.
    Zhang Y; Tan YW; Stormer HL; Kim P
    Nature; 2005 Nov; 438(7065):201-4. PubMed ID: 16281031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External bias dependent direct to indirect band gap transition in graphene nanoribbon.
    Majumdar K; Murali KV; Bhat N; Lin YM
    Nano Lett; 2010 Aug; 10(8):2857-62. PubMed ID: 20597528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The finite-size effect on the transport properties in edge-modified graphene nanoribbon-based molecular devices.
    Ding Z; Jiang J; Xing H; Shu H; Huang Y; Chen X; Lu W
    J Comput Chem; 2011 Jun; 32(8):1753-9. PubMed ID: 21351109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin thermopower and thermoconductance in a ferromagnetic graphene nanoribbon.
    Cheng SG
    J Phys Condens Matter; 2012 Sep; 24(38):385302. PubMed ID: 22945502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.