BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21697724)

  • 41. EDRF does not mediate coronary vasodilation secondary to simulated ischemia: a study on KATP channels and N omega-nitro-L-arginine on coronary perfusion pressure in isolated Langendorff-perfused guinea-pig hearts.
    Gasser R; Köppel H; Brussee H; Grisold M; Holzmann S; Klein W
    Cardiovasc Drugs Ther; 1998 Jul; 12(3):279-84. PubMed ID: 9784907
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of nitric oxide synthase enhances the myocardial toxicity of phenylpropanolamine.
    Zaloga GP; Clark JD; Roberts PR
    Crit Care Med; 2000 Nov; 28(11):3679-83. PubMed ID: 11098973
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of nitric oxide in hypoxic coronary vasodilatation in isolated perfused guinea pig heart.
    Brown IP; Thompson CI; Belloni FL
    Am J Physiol; 1993 Mar; 264(3 Pt 2):H821-9. PubMed ID: 8456983
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Roles of NO and Ca2+-activated K+ channels in coronary vasodilation induced by 17beta-estradiol in ischemic heart failure.
    Node K; Kitakaze M; Kosaka H; Minamino T; Sato H; Kuzuya T; Hori M
    FASEB J; 1997 Aug; 11(10):793-9. PubMed ID: 9271364
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purinergic component in the coronary vasodilatation to acetylcholine after ischemia-reperfusion in perfused rat hearts.
    García-Villalón ÁL; Granado M; Monge L; Fernández N; Carreño-Tarragona G; Amor S
    J Vasc Res; 2014; 51(4):283-9. PubMed ID: 25228127
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of adenosine in regulation of coronary flow in dogs with inhibited synthesis of endothelium-derived nitric oxide.
    Matsunaga T; Okumura K; Tsunoda R; Tayama S; Tabuchi T; Yasue H
    Am J Physiol; 1996 Feb; 270(2 Pt 2):H427-34. PubMed ID: 8779816
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intermedin/adrenomedullin-2 dilates the rat pulmonary vascular bed: dependence on CGRP receptors and nitric oxide release.
    Burak Kandilci H; Gumusel B; Wasserman A; Witriol N; Lippton H
    Peptides; 2006 Jun; 27(6):1390-6. PubMed ID: 16412533
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coronary nitric oxide production controls cardiac substrate metabolism during pregnancy in the dog.
    Williams JG; Ojaimi C; Qanud K; Zhang S; Xu X; Recchia FA; Hintze TH
    Am J Physiol Heart Circ Physiol; 2008 Jun; 294(6):H2516-23. PubMed ID: 18424630
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The vasoconstrictor effect of 8-epi prostaglandin F2alpha in the hypoxic rat heart.
    Kromer BM; Tippins JR
    Br J Pharmacol; 1999 Mar; 126(5):1171-4. PubMed ID: 10205005
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 5-Hydroxytryptamine mediates endothelium dependent coronary vasodilatation in the isolated rat heart by the release of nitric oxide.
    Mankad PS; Chester AH; Yacoub MH
    Cardiovasc Res; 1991 Mar; 25(3):244-8. PubMed ID: 2029713
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of nitric oxide in the cardiac effects of hydrogen peroxide.
    Valen G; Skjelbakken T; Vaage J
    Mol Cell Biochem; 1996 Jun; 159(1):7-14. PubMed ID: 8813704
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TMEM16A-encoded anoctamin 1 inhibition contributes to chrysin-induced coronary relaxation.
    Ma G; Zhang J; Yang X; Guo P; Hou X; Fan Y; Liu Y; Zhang M
    Biomed Pharmacother; 2020 Nov; 131():110766. PubMed ID: 33152928
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of nitric oxide in rat coronary flow regulation during respiratory and metabolic acidosis.
    Song D; O'Regan MH; Phillis JW
    Gen Pharmacol; 1999 May; 32(5):571-5. PubMed ID: 10382859
    [TBL] [Abstract][Full Text] [Related]  

  • 54. TRPA1 and TRPV1 contribute to propofol-mediated antagonism of U46619-induced constriction in murine coronary arteries.
    Sinharoy P; Bratz IN; Sinha S; Showalter LE; Andrei SR; Damron DS
    PLoS One; 2017; 12(6):e0180106. PubMed ID: 28644897
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms of hypoxic coronary vasodilatation in isolated perfused rat hearts.
    Kamekura I; Okumura K; Matsui H; Murase K; Mokuno S; Toki Y; Nakashima Y; Ito T
    J Cardiovasc Pharmacol; 1999 Jun; 33(6):836-42. PubMed ID: 10367585
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activation of serotonin 5-HT₇ receptor induces coronary flow increase in isolated rat heart.
    Chang Chien CC; Hsin LW; Su MJ
    Eur J Pharmacol; 2015 Feb; 748():68-75. PubMed ID: 25196212
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coronary effects of cyclovirobuxine D in anesthetized pigs and in isolated porcine coronary arteries.
    Grossini E; Battaglia A; Brunelleschi S; Mary DA; Molinari C; Viano I; Vacca G
    Life Sci; 1999; 65(5):PL59-65. PubMed ID: 10462084
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Testosterone induces dilation of canine coronary conductance and resistance arteries in vivo.
    Chou TM; Sudhir K; Hutchison SJ; Ko E; Amidon TM; Collins P; Chatterjee K
    Circulation; 1996 Nov; 94(10):2614-9. PubMed ID: 8921808
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiple mechanisms are involved in the acute vasodilatory effect of 17beta-estradiol in the isolated perfused rat heart.
    Hügel S; Neubauer S; Lie SZ; Ernst R; Horn M; Schmidt HH; Allolio B; Reincke M
    J Cardiovasc Pharmacol; 1999 Jun; 33(6):852-8. PubMed ID: 10367587
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Participation of ATP-sensitive potassium channel in autoregulation of coronary blood flow under the condition of limited motor activity].
    Solodkov AP; Lazuko SS
    Ross Fiziol Zh Im I M Sechenova; 2005 Oct; 91(10):1149-61. PubMed ID: 16335422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.