These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21697946)

  • 1. Flying in a flock comes at a cost in pigeons.
    Usherwood JR; Stavrou M; Lowe JC; Roskilly K; Wilson AM
    Nature; 2011 Jun; 474(7352):494-7. PubMed ID: 21697946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Birds invest wingbeats to keep a steady head and reap the ultimate benefits of flying together.
    Taylor LA; Taylor GK; Lambert B; Walker JA; Biro D; Portugal SJ
    PLoS Biol; 2019 Jun; 17(6):e3000299. PubMed ID: 31211769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When flocking is costly: reduced cluster-flock density over long-duration flight in pigeons.
    Sankey DWE; Portugal SJ
    Naturwissenschaften; 2019 Jul; 106(7-8):47. PubMed ID: 31309338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pigeons steer like helicopters and generate down- and upstroke lift during low speed turns.
    Ros IG; Bassman LC; Badger MA; Pierson AN; Biewener AA
    Proc Natl Acad Sci U S A; 2011 Dec; 108(50):19990-5. PubMed ID: 22123982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.
    Ros IG; Badger MA; Pierson AN; Bassman LC; Biewener AA
    J Exp Biol; 2015 Feb; 218(Pt 3):480-90. PubMed ID: 25452503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight.
    Portugal SJ; Hubel TY; Fritz J; Heese S; Trobe D; Voelkl B; Hailes S; Wilson AM; Usherwood JR
    Nature; 2014 Jan; 505(7483):399-402. PubMed ID: 24429637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flying fast improves aerodynamic economy of heavier birds.
    Bishop CM; Halsey LG; Askew GN
    Sci Rep; 2024 Mar; 14(1):7298. PubMed ID: 38538653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.
    Muijres FT; Bowlin MS; Johansson LC; Hedenström A
    J R Soc Interface; 2012 Feb; 9(67):292-303. PubMed ID: 21676971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerodynamics: The cost of flight in flocks.
    Spedding G
    Nature; 2011 Jun; 474(7352):458-9. PubMed ID: 21697942
    [No Abstract]   [Full Text] [Related]  

  • 11. The role of wingbeat frequency and amplitude in flight power.
    Krishnan K; Garde B; Bennison A; Cole NC; Cole EL; Darby J; Elliott KH; Fell A; Gómez-Laich A; de Grissac S; Jessopp M; Lempidakis E; Mizutani Y; Prudor A; Quetting M; Quintana F; Robotka H; Roulin A; Ryan PG; Schalcher K; Schoombie S; Tatayah V; Tremblay F; Weimerskirch H; Whelan S; Wikelski M; Yoda K; Hedenström A; Shepard ELC
    J R Soc Interface; 2022 Aug; 19(193):20220168. PubMed ID: 36000229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excess baggage for birds: inappropriate placement of tags on gannets changes flight patterns.
    Vandenabeele SP; Grundy E; Friswell MI; Grogan A; Votier SC; Wilson RP
    PLoS One; 2014; 9(3):e92657. PubMed ID: 24671007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion.
    Chang E; Matloff LY; Stowers AK; Lentink D
    Sci Robot; 2020 Jan; 5(38):. PubMed ID: 33022590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous measurements of three-dimensional trajectories and wingbeat frequencies of birds in the field.
    Ling H; Mclvor GE; Nagy G; MohaimenianPour S; Vaughan RT; Thornton A; Ouellette NT
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30355809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematics and power requirements of ascending and descending flight in the pigeon (Columba livia).
    Berg AM; Biewener AA
    J Exp Biol; 2008 Apr; 211(Pt 7):1120-30. PubMed ID: 18344487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinated Behaviour in Pigeon Flocks.
    Yomosa M; Mizuguchi T; Vásárhelyi G; Nagy M
    PLoS One; 2015; 10(10):e0140558. PubMed ID: 26485662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic pressure maps for wings and tails of pigeons in slow, flapping flight, and their energetic implications.
    Usherwood JR; Hedrick TL; McGowan CP; Biewener AA
    J Exp Biol; 2005 Jan; 208(Pt 2):355-69. PubMed ID: 15634854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flight in Ground Effect Dramatically Reduces Aerodynamic Costs in Bats.
    Johansson LC; Jakobsen L; Hedenström A
    Curr Biol; 2018 Nov; 28(21):3502-3507.e4. PubMed ID: 30344122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical group dynamics in pigeon flocks.
    Nagy M; Akos Z; Biro D; Vicsek T
    Nature; 2010 Apr; 464(7290):890-3. PubMed ID: 20376149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.