BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

657 related articles for article (PubMed ID: 21698063)

  • 1. Energy metabolism in human pluripotent stem cells and their differentiated counterparts.
    Varum S; Rodrigues AS; Moura MB; Momcilovic O; Easley CA; Ramalho-Santos J; Van Houten B; Schatten G
    PLoS One; 2011; 6(6):e20914. PubMed ID: 21698063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the genic and metabolic characteristics of induced pluripotent stem cells from polycystic ovary syndrome women.
    Min Z; Gao Q; Zhen X; Fan Y; Tan T; Li R; Zhao Y; Yu Y
    Stem Cell Res Ther; 2018 Aug; 9(1):210. PubMed ID: 30092830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells.
    Zhang J; Khvorostov I; Hong JS; Oktay Y; Vergnes L; Nuebel E; Wahjudi PN; Setoguchi K; Wang G; Do A; Jung HJ; McCaffery JM; Kurland IJ; Reue K; Lee WN; Koehler CM; Teitell MA
    EMBO J; 2011 Nov; 30(24):4860-73. PubMed ID: 22085932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting Mitochondrial Function and Metabolism in Pluripotent Stem Cells: Where Do We Stand in Neurological Diseases?
    Lopes C; Rego AC
    Mol Neurobiol; 2017 Apr; 54(3):1858-1873. PubMed ID: 26892627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.
    Folmes CD; Nelson TJ; Martinez-Fernandez A; Arrell DK; Lindor JZ; Dzeja PP; Ikeda Y; Perez-Terzic C; Terzic A
    Cell Metab; 2011 Aug; 14(2):264-71. PubMed ID: 21803296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells.
    Prigione A; Fauler B; Lurz R; Lehrach H; Adjaye J
    Stem Cells; 2010 Apr; 28(4):721-33. PubMed ID: 20201066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA damage responses in human induced pluripotent stem cells and embryonic stem cells.
    Momcilovic O; Knobloch L; Fornsaglio J; Varum S; Easley C; Schatten G
    PLoS One; 2010 Oct; 5(10):e13410. PubMed ID: 20976220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming.
    Nishimura K; Fukuda A; Hisatake K
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial and glycolytic remodeling during nascent neural differentiation of human pluripotent stem cells.
    Lees JG; Gardner DK; Harvey AJ
    Development; 2018 Oct; 145(20):. PubMed ID: 30266828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OCIAD1 Controls Electron Transport Chain Complex I Activity to Regulate Energy Metabolism in Human Pluripotent Stem Cells.
    Shetty DK; Kalamkar KP; Inamdar MS
    Stem Cell Reports; 2018 Jul; 11(1):128-141. PubMed ID: 29937147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Inhibition of HIF1α and LDHA.
    Hu D; Linders A; Yamak A; Correia C; Kijlstra JD; Garakani A; Xiao L; Milan DJ; van der Meer P; Serra M; Alves PM; Domian IJ
    Circ Res; 2018 Oct; 123(9):1066-1079. PubMed ID: 30355156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the bioenergetic profile of human pluripotent stem cells.
    Pfiffer V; Prigione A
    Methods Mol Biol; 2015; 1264():279-88. PubMed ID: 25631022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of Human Neural Stem Cells into Motor Neurons Stimulates Mitochondrial Biogenesis and Decreases Glycolytic Flux.
    O'Brien LC; Keeney PM; Bennett JP
    Stem Cells Dev; 2015 Sep; 24(17):1984-94. PubMed ID: 25892363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial and metabolic remodeling during reprogramming and differentiation of the reprogrammed cells.
    Choi HW; Kim JH; Chung MK; Hong YJ; Jang HS; Seo BJ; Jung TH; Kim JS; Chung HM; Byun SJ; Han SG; Seo HG; Do JT
    Stem Cells Dev; 2015 Jun; 24(11):1366-73. PubMed ID: 25590788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty Acid-Treated Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes Exhibit Adult Cardiomyocyte-Like Energy Metabolism Phenotypes.
    Horikoshi Y; Yan Y; Terashvili M; Wells C; Horikoshi H; Fujita S; Bosnjak ZJ; Bai X
    Cells; 2019 Sep; 8(9):. PubMed ID: 31533262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulations of microRNA in human pluripotent stem cells and their derivatives.
    Rushing SN; Herren AW; Lieu DK; Li RA
    Methods Mol Biol; 2011; 690():107-20. PubMed ID: 21042988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming.
    Prigione A; Lichtner B; Kuhl H; Struys EA; Wamelink M; Lehrach H; Ralser M; Timmermann B; Adjaye J
    Stem Cells; 2011 Sep; 29(9):1338-48. PubMed ID: 21732474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells.
    Birket MJ; Orr AL; Gerencser AA; Madden DT; Vitelli C; Swistowski A; Brand MD; Zeng X
    J Cell Sci; 2011 Feb; 124(Pt 3):348-58. PubMed ID: 21242311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of human embryonic stem cell and induced pluripotent stem cell-derived hepatocyte-like cells reveals current drawbacks and possible strategies for improved differentiation.
    Jozefczuk J; Prigione A; Chavez L; Adjaye J
    Stem Cells Dev; 2011 Jul; 20(7):1259-75. PubMed ID: 21162674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA profiling of human-induced pluripotent stem cells.
    Wilson KD; Venkatasubrahmanyam S; Jia F; Sun N; Butte AJ; Wu JC
    Stem Cells Dev; 2009 Jun; 18(5):749-58. PubMed ID: 19284351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.