These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 21698292)
1. In vitro megakaryocyte differentiation and proplatelet formation in Ph-negative classical myeloproliferative neoplasms: distinct patterns in the different clinical phenotypes. Balduini A; Badalucco S; Pugliano MT; Baev D; De Silvestri A; Cattaneo M; Rosti V; Barosi G PLoS One; 2011; 6(6):e21015. PubMed ID: 21698292 [TBL] [Abstract][Full Text] [Related]
2. Clinical Manifestations and Risk Factors for Complications of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Duangnapasatit B; Rattarittamrong E; Rattanathammethee T; Hantrakool S; Chai-Adisaksopha C; Tantiworawit A; Norasetthada L Asian Pac J Cancer Prev; 2015; 16(12):5013-8. PubMed ID: 26163633 [TBL] [Abstract][Full Text] [Related]
3. [Pathological characteristics of megakaryocytes in myeloproliferative neoplasms and their correlation with driver gene mutations]. Shi ZX; Zhang PH; Li B; Fang LH; Xu ZF; Qin TJ; Liu JQ; Hu NB; Pan LJ; Qu SQ; Liu D; Xiao ZJ Zhonghua Xue Ye Xue Za Zhi; 2020 Oct; 41(10):798-805. PubMed ID: 33190435 [No Abstract] [Full Text] [Related]
4. Diagnosis, pathogenesis and treatment of the myeloproliferative disorders essential thrombocythemia, polycythemia vera and essential megakaryocytic granulocytic metaplasia and myelofibrosis. Michiels JJ; Kutti J; Stark P; Bazzan M; Gugliotta L; Marchioli R; Griesshammer M; van Genderen PJ; Brière J; Kiladjian JJ; Barbui T; Finazzi G; Berlin NI; Pearson TC; Green AC; Fruchtmann SM; Silver RT; Hansmann E; Wehmeier A; Lengfelder E; Landolfi R; Kvasnicka HM; Hasselbalch H; Cervantes F; Thiele J Neth J Med; 1999 Feb; 54(2):46-62. PubMed ID: 10079679 [TBL] [Abstract][Full Text] [Related]
5. Changing concepts of diagnostic criteria of myeloproliferative disorders and the molecular etiology and classification of myeloproliferative neoplasms: from Dameshek 1950 to Vainchenker 2005 and beyond. Michiels JJ; Berneman Z; Schroyens W; De Raeve H Acta Haematol; 2015; 133(1):36-51. PubMed ID: 25116092 [TBL] [Abstract][Full Text] [Related]
6. A lasso and random forest model using flow cytometry data identifies primary myelofibrosis. Zhang F; Wang YZ; Chang Y; Yuan XY; Shi WH; Shi HX; Shen JZ; Liu YR Cytometry B Clin Cytom; 2024 Jul; 106(4):272-281. PubMed ID: 38647185 [TBL] [Abstract][Full Text] [Related]
7. The 2001 World Health Organization and updated European clinical and pathological criteria for the diagnosis, classification, and staging of the Philadelphia chromosome-negative chronic myeloproliferative disorders. Michiels JJ; De Raeve H; Berneman Z; Van Bockstaele D; Hebeda K; Lam K; Schroyens W Semin Thromb Hemost; 2006 Jun; 32(4 Pt 2):307-40. PubMed ID: 16810609 [TBL] [Abstract][Full Text] [Related]
8. GATA1 downregulation in prefibrotic and fibrotic stages of primary myelofibrosis and in the myelofibrotic progression of other myeloproliferative neoplasms. Sangiorgio VFI; Nam A; Chen Z; Orazi A; Tam W Leuk Res; 2021 Jan; 100():106495. PubMed ID: 33360878 [TBL] [Abstract][Full Text] [Related]
9. Aberrant proplatelet formation in chronic myeloproliferative neoplasms. Muth M; Büsche G; Bock O; Hussein K; Kreipe H Leuk Res; 2010 Nov; 34(11):1424-9. PubMed ID: 20430444 [TBL] [Abstract][Full Text] [Related]
10. Action of thrombopoietin at the megakaryocyte progenitor level is critical for the subsequent proplatelet production. Horie K; Miyazaki H; Hagiwara T; Tahara E; Matsumoto A; Kadoya T; Ogami K; Kato T Exp Hematol; 1997 Feb; 25(2):169-76. PubMed ID: 9015217 [TBL] [Abstract][Full Text] [Related]
11. Somatic Mutations in Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Ferreira Cristina S; Polo B; Lacerda JF Semin Hematol; 2018 Oct; 55(4):215-222. PubMed ID: 30502850 [TBL] [Abstract][Full Text] [Related]
12. Increased Dkk3 protein expression in platelets and megakaryocytes of patients with myeloproliferative neoplasms. Medinger M; Tzankov A; Kern J; Pircher A; Hermann M; Ott HW; Gastl G; Untergasser G; Gunsilius E Thromb Haemost; 2011 Jan; 105(1):72-80. PubMed ID: 20978717 [TBL] [Abstract][Full Text] [Related]
13. JAK2(V617F) allele burden discriminates essential thrombocythemia from a subset of prefibrotic-stage primary myelofibrosis. Hussein K; Bock O; Theophile K; von Neuhoff N; Buhr T; Schlué J; Büsche G; Kreipe H Exp Hematol; 2009 Oct; 37(10):1186-1193.e7. PubMed ID: 19616600 [TBL] [Abstract][Full Text] [Related]
14. Different involvement of the megakaryocytic lineage by the JAK2 V617F mutation in Polycythemia vera, essential thrombocythemia and chronic idiopathic myelofibrosis. Hussein K; Brakensiek K; Buesche G; Buhr T; Wiese B; Kreipe H; Bock O Ann Hematol; 2007 Apr; 86(4):245-53. PubMed ID: 17262192 [TBL] [Abstract][Full Text] [Related]
15. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms: primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable. Kim SY; Im K; Park SN; Kwon J; Kim JA; Lee DS Am J Clin Pathol; 2015 May; 143(5):635-44. PubMed ID: 25873496 [TBL] [Abstract][Full Text] [Related]
16. The differential diagnosis of classical myeloproliferative neoplasms (MPN): the updated WHO criteria. Kvasnicka HM Rinsho Ketsueki; 2019; 60(9):1166-1175. PubMed ID: 31597840 [TBL] [Abstract][Full Text] [Related]
17. Correlations between Janus kinase 2 V617F allele burdens and clinicohematologic parameters in myeloproliferative neoplasms. Ha JS; Kim YK; Jung SI; Jung HR; Chung IS Ann Lab Med; 2012 Nov; 32(6):385-91. PubMed ID: 23130336 [TBL] [Abstract][Full Text] [Related]
18. Primary myelofibrosis is the most frequent myeloproliferative neoplasm associated with del(5q): clinicopathologic comparison of del(5q)-positive and -negative cases. Santana-Davila R; Tefferi A; Holtan SG; Ketterling RP; Dewald GW; Knudson RA; Steensma DP; Chen D; Hoyer JD; Hanson CA Leuk Res; 2008 Dec; 32(12):1927-30. PubMed ID: 18538839 [TBL] [Abstract][Full Text] [Related]
19. Immune thrombocytopenia: antiplatelet autoantibodies inhibit proplatelet formation by megakaryocytes and impair platelet production in vitro. Iraqi M; Perdomo J; Yan F; Choi PY; Chong BH Haematologica; 2015 May; 100(5):623-32. PubMed ID: 25682608 [TBL] [Abstract][Full Text] [Related]