These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 21698382)

  • 1. Design and integration of a generic disposable array-compatible sensor housing into an integrated disposable indirect microfluidic flow injection analysis system.
    Rapp BE; Schickling B; Prokop J; Piotter V; Rapp M; Länge K
    Biomed Microdevices; 2011 Oct; 13(5):909-22. PubMed ID: 21698382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip.
    Irawan R; Tjin SC; Fang X; Fu CY
    Biomed Microdevices; 2007 Jun; 9(3):413-9. PubMed ID: 17473985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sample flow switching techniques on microfluidic chips.
    Pan YJ; Lin JJ; Luo WJ; Yang RJ
    Biosens Bioelectron; 2006 Feb; 21(8):1644-8. PubMed ID: 16112854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A disposable polymer sensor chip combined with micro-fluidics and surface plasmon read-out.
    Zhang N; Liu H; Knoll W
    Biosens Bioelectron; 2009 Feb; 24(6):1783-7. PubMed ID: 18835707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital flow sensors: reaching new levels.
    Kanne U; Sauvain C
    Med Device Technol; 2006 Jun; 17(5):12-4. PubMed ID: 16903382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption detection of enzymatic reaction using optical microfluidics based intermittent flow microreactor system.
    Chandrasekaran A; Packirisamy M
    IEE Proc Nanobiotechnol; 2006 Dec; 153(6):137-43. PubMed ID: 17187445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flat-chip microanalytical enzyme sensor for salivary amylase activity.
    Yamaguchi M; Deguchi M; Wakasugi J
    Biomed Microdevices; 2005 Dec; 7(4):295-300. PubMed ID: 16404507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA.
    Schüler T; Kretschmer R; Jessing S; Urban M; Fritzsche W; Möller R; Popp J
    Biosens Bioelectron; 2009 Sep; 25(1):15-21. PubMed ID: 19592230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring of lactate.
    Wu MH; Cai H; Xu X; Urban JP; Cui ZF; Cui Z
    Biomed Microdevices; 2005 Dec; 7(4):323-9. PubMed ID: 16404510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of a surface acoustic wave biosensor in a microfluidic polymer chip.
    Länge K; Blaess G; Voigt A; Götzen R; Rapp M
    Biosens Bioelectron; 2006 Aug; 22(2):227-32. PubMed ID: 16458497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flexible polymer tube lab-chip integrated with microsensors for smart microcatheter.
    Li C; Wu PM; Han J; Ahn CH
    Biomed Microdevices; 2008 Oct; 10(5):671-9. PubMed ID: 18483863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic immunosensor systems.
    Bange A; Halsall HB; Heineman WR
    Biosens Bioelectron; 2005 Jun; 20(12):2488-503. PubMed ID: 15854821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to design magneto-based total analysis systems for biomedical applications.
    Weddemann A; Albon C; Auge A; Wittbracht F; Hedwig P; Akemeier D; Rott K; Meissner D; Jutzi P; Hütten A
    Biosens Bioelectron; 2010 Dec; 26(4):1152-63. PubMed ID: 20638263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol.
    Hong CC; Chang PH; Lin CC; Hong CL
    Biosens Bioelectron; 2010 May; 25(9):2058-64. PubMed ID: 20206494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging liquid dielectrophoresis for microfluidic applications.
    Chugh D; Kaler KV
    Biomed Mater; 2008 Sep; 3(3):034009. PubMed ID: 18708707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Live cells-based cytotoxic sensorchip fabricated in a microfluidic system.
    Wada K; Taniguchi A; Kobayashi J; Yamato M; Okano T
    Biotechnol Bioeng; 2008 Apr; 99(6):1513-7. PubMed ID: 18080341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs.
    Yu L; Li CM; Liu Y; Gao J; Wang W; Gan Y
    Lab Chip; 2009 May; 9(9):1243-7. PubMed ID: 19370243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells.
    Yagur-Kroll S; Schreuder E; Ingham CJ; Heideman R; Rosen R; Belkin S
    Biosens Bioelectron; 2015 Feb; 64():625-32. PubMed ID: 25441411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of fluorescence generated in microfluidic channel using in-fiber grooves and in-fiber microchannel sensors.
    Irawan R; Tjin SC
    Methods Mol Biol; 2009; 503():403-22. PubMed ID: 19151955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.