BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21698479)

  • 1. Proteolysis of the pericellular matrix: Pinpointing the role and involvement of matrix metalloproteinases in early osteoarthritic remodeling.
    Danalache M; Umrath F; Riester R; Schwitalle M; Guilak F; Hofmann UK
    Acta Biomater; 2024 Jun; 181():297-307. PubMed ID: 38710401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage.
    Wilusz RE; Zauscher S; Guilak F
    Osteoarthritis Cartilage; 2013 Dec; 21(12):1895-903. PubMed ID: 24025318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biot Theory-Based Finite Element Modeling of Continuous Ultrasound Propagation Through Microscale Articular Cartilage.
    Basu S; Subramanian A; Rani SL
    J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36346208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomic Profiling and Characterization of a Novel 3D Culture System for Studying Chondrocyte Mechanotransduction.
    Brahmachary P; Erdogan E; Myers E; June RK
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial organization and mechanical properties of the pericellular matrix on chondrocytes.
    McLane LT; Chang P; Granqvist A; Boehm H; Kramer A; Scrimgeour J; Curtis JE
    Biophys J; 2013 Mar; 104(5):986-96. PubMed ID: 23473481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Cues: Bidirectional Reciprocity in the Extracellular Matrix Drives Mechano-Signalling in Articular Cartilage.
    Gilbert SJ; Bonnet CS; Blain EJ
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of spatial organization and destruction of the pericellular matrix in early osteoarthritis in vivo and in a novel in vitro methodology.
    Felka T; Rothdiener M; Bast S; Uynuk-Ool T; Zouhair S; Ochs BG; De Zwart P; Stoeckle U; Aicher WK; Hart ML; Shiozawa T; Grodzinsky AJ; Schenke-Layland K; Venkatesan JK; Cucchiarini M; Madry H; Kurz B; Rolauffs B
    Osteoarthritis Cartilage; 2016 Jul; 24(7):1200-9. PubMed ID: 26879798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA sequencing.
    Rukov JL; Gravesen E; Mace ML; Hofman-Bang J; Vinther J; Andersen CB; Lewin E; Olgaard K
    Am J Physiol Renal Physiol; 2016 Mar; 310(6):F477-91. PubMed ID: 26739890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the Molecular Composition of Cartilage by Proteomics.
    Hsueh MF; Khabut A; Kjellström S; Önnerfjord P; Kraus VB
    J Proteome Res; 2016 Feb; 15(2):374-88. PubMed ID: 26632656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of serum and compressive loading on the cartilage matrix synthesis and spatiotemporal deposition around chondrocytes in 3D culture.
    Wu P; DeLassus E; Patra D; Liao W; Sandell LJ
    Tissue Eng Part A; 2013 May; 19(9-10):1199-208. PubMed ID: 23410025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis.
    Musumeci G; Loreto C; Leonardi R; Castorina S; Giunta S; Carnazza ML; Trovato FM; Pichler K; Weinberg AM
    J Bone Miner Metab; 2013 May; 31(3):274-84. PubMed ID: 23263781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress in histochemistry and cell biology.
    Hübner S; Efthymiadis A
    Histochem Cell Biol; 2012 Apr; 137(4):403-57. PubMed ID: 22366957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational spectroscopic monitoring and biochemical analysis of pericellular matrix formation and maturation in a 3-dimensional chondrocyte culture model.
    Owida HA; Rutter AV; Cinque G; Kuiper NJ; Sulé-Suso J; Yang Y
    Analyst; 2018 Dec; 143(24):5979-5986. PubMed ID: 30310903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-culture of chondrons and mesenchymal stromal cells reduces the loss of collagen VI and improves extracellular matrix production.
    Owida HA; De Las Heras Ruiz T; Dhillon A; Yang Y; Kuiper NJ
    Histochem Cell Biol; 2017 Dec; 148(6):625-638. PubMed ID: 28821957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of type VI collagen in chondrocyte microenvironment: study of chondrons isolated from human normal and degenerative articular cartilage and cultured chondrocytes.
    Horikawa O; Nakajima H; Kikuchi T; Ichimura S; Yamada H; Fujikawa K; Toyama Y
    J Orthop Sci; 2004; 9(1):29-36. PubMed ID: 14767702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage.
    Guilak F; Alexopoulos LG; Upton ML; Youn I; Choi JB; Cao L; Setton LA; Haider MA
    Ann N Y Acad Sci; 2006 Apr; 1068():498-512. PubMed ID: 16831947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The deformation behavior and mechanical properties of chondrocytes in articular cartilage.
    Guilak F; Jones WR; Ting-Beall HP; Lee GM
    Osteoarthritis Cartilage; 1999 Jan; 7(1):59-70. PubMed ID: 10367015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A proteomic approach for identification and localization of the pericellular components of chondrocytes.
    Zhang Z; Jin W; Beckett J; Otto T; Moed B
    Histochem Cell Biol; 2011 Aug; 136(2):153-62. PubMed ID: 21698479
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.