BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 21699182)

  • 1. In situ infrared spectroscopic study of forsterite carbonation in wet supercritical CO2.
    Loring JS; Thompson CJ; Wang Z; Joly AG; Sklarew DS; Schaef HT; Ilton ES; Rosso KM; Felmy AR
    Environ Sci Technol; 2011 Jul; 45(14):6204-10. PubMed ID: 21699182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forsterite [Mg2SiO4)] carbonation in wet supercritical CO2: an in situ high-pressure X-ray diffraction study.
    Todd Schaef H; McGrail BP; Loring JL; Bowden ME; Arey BW; Rosso KM
    Environ Sci Technol; 2013 Jan; 47(1):174-81. PubMed ID: 22612304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ infrared spectroscopic study of brucite carbonation in dry to water-saturated supercritical carbon dioxide.
    Loring JS; Thompson CJ; Zhang C; Wang Z; Schaef HT; Rosso KM
    J Phys Chem A; 2012 May; 116(19):4768-77. PubMed ID: 22533532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of organic ligands on forsterite reactivity in supercritical CO2 fluids.
    Miller QR; Kaszuba JP; Schaef HT; Bowden ME; McGrail BP
    Environ Sci Technol; 2015 Apr; 49(7):4724-34. PubMed ID: 25807011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forsterite dissolution in saline water at elevated temperature and high CO2 pressure.
    Wang F; Giammar DE
    Environ Sci Technol; 2013 Jan; 47(1):168-73. PubMed ID: 22650147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO₂ sequestration through mineral carbonation of iron oxyhydroxides.
    Lammers K; Murphy R; Riendeau A; Smirnov A; Schoonen MA; Strongin DR
    Environ Sci Technol; 2011 Dec; 45(24):10422-8. PubMed ID: 22066460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mineral sequestration of CO(2) by aqueous carbonation of coal combustion fly-ash.
    Montes-Hernandez G; Pérez-López R; Renard F; Nieto JM; Charlet L
    J Hazard Mater; 2009 Jan; 161(2-3):1347-54. PubMed ID: 18539389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide.
    Loring JS; Chen J; Bénézeth P; Qafoku O; Ilton ES; Washton NM; Thompson CJ; Martin PF; McGrail BP; Rosso KM; Felmy AR; Schaef HT
    Langmuir; 2015 Jul; 31(27):7533-43. PubMed ID: 26079871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical Water Coverage during Forsterite Carbonation in Thin Water Films: Activating Dissolution and Mass Transport.
    Placencia-Gómez E; Kerisit SN; Mehta HS; Qafoku O; Thompson CJ; Graham TR; Ilton ES; Loring JS
    Environ Sci Technol; 2020 Jun; 54(11):6888-6899. PubMed ID: 32383859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of diffusive transport on carbonate mineral formation from magnesium silicate-CO2-water reactions.
    Giammar DE; Wang F; Guo B; Surface JA; Peters CA; Conradi MS; Hayes SE
    Environ Sci Technol; 2014 Dec; 48(24):14344-51. PubMed ID: 25420634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-pressure magic angle spinning nuclear magnetic resonance.
    Hoyt DW; Turcu RV; Sears JA; Rosso KM; Burton SD; Felmy AR; Hu JZ
    J Magn Reson; 2011 Oct; 212(2):378-85. PubMed ID: 21862372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ X-ray diffraction study of Na+ saturated montmorillonite exposed to variably wet super critical CO2.
    Ilton ES; Schaef HT; Qafoku O; Rosso KM; Felmy AR
    Environ Sci Technol; 2012 Apr; 46(7):4241-8. PubMed ID: 22404533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated high-pressure titration system with in situ infrared spectroscopic detection.
    Thompson CJ; Martin PF; Chen J; Benezeth P; Schaef HT; Rosso KM; Felmy AR; Loring JS
    Rev Sci Instrum; 2014 Apr; 85(4):044102. PubMed ID: 24784630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ measurement of magnesium carbonate formation from CO2 using static high-pressure and -temperature 13C NMR.
    Surface JA; Skemer P; Hayes SE; Conradi MS
    Environ Sci Technol; 2013 Jan; 47(1):119-25. PubMed ID: 22676479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor.
    Chang EE; Pan SY; Chen YH; Chu HW; Wang CF; Chiang PC
    J Hazard Mater; 2011 Nov; 195():107-14. PubMed ID: 21889848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thin Water Films Enable Low-Temperature Magnesite Growth Under Conditions Relevant to Geologic Carbon Sequestration.
    Kerisit SN; Mergelsberg ST; Thompson CJ; White SK; Loring JS
    Environ Sci Technol; 2021 Sep; 55(18):12539-12548. PubMed ID: 34491048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.
    Tian S; Jiang J; Chen X; Yan F; Li K
    ChemSusChem; 2013 Dec; 6(12):2348-55. PubMed ID: 23913597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon sequestration kinetic and storage capacity of ultramafic mining waste.
    Pronost J; Beaudoin G; Tremblay J; Larachi F; Duchesne J; Hébert R; Constantin M
    Environ Sci Technol; 2011 Nov; 45(21):9413-20. PubMed ID: 21919443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases.
    He R; Davda RR; Dumesic JA
    J Phys Chem B; 2005 Feb; 109(7):2810-20. PubMed ID: 16851292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous carbonation of natural brucite: relevance to CO2 sequestration.
    Zhao L; Sang L; Chen J; Ji J; Teng HH
    Environ Sci Technol; 2010 Jan; 44(1):406-11. PubMed ID: 19947626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.