These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 21699233)
1. Hybrid bilayer membrane: a platform to study the role of proton flux on the efficiency of oxygen reduction by a molecular electrocatalyst. Hosseini A; Barile CJ; Devadoss A; Eberspacher TA; Decreau RA; Collman JP J Am Chem Soc; 2011 Jul; 133(29):11100-2. PubMed ID: 21699233 [TBL] [Abstract][Full Text] [Related]
2. Role of proton-coupled electron transfer in O-O bond activation. Rosenthal J; Nocera DG Acc Chem Res; 2007 Jul; 40(7):543-53. PubMed ID: 17595052 [TBL] [Abstract][Full Text] [Related]
3. Proton-coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine. Hatay I; Su B; Li F; Méndez MA; Khoury T; Gros CP; Barbe JM; Ersoz M; Samec Z; Girault HH J Am Chem Soc; 2009 Sep; 131(37):13453-9. PubMed ID: 19715275 [TBL] [Abstract][Full Text] [Related]
4. Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane. Barile CJ; Tse EC; Li Y; Sobyra TB; Zimmerman SC; Hosseini A; Gewirth AA Nat Mater; 2014 Jun; 13(6):619-23. PubMed ID: 24813418 [TBL] [Abstract][Full Text] [Related]
5. Bidirectional and unidirectional PCET in a molecular model of a cobalt-based oxygen-evolving catalyst. Symes MD; Surendranath Y; Lutterman DA; Nocera DG J Am Chem Soc; 2011 Apr; 133(14):5174-7. PubMed ID: 21413703 [TBL] [Abstract][Full Text] [Related]
6. Catalytic four-electron reduction of O2 via rate-determining proton-coupled electron transfer to a dinuclear cobalt-μ-1,2-peroxo complex. Fukuzumi S; Mandal S; Mase K; Ohkubo K; Park H; Benet-Buchholz J; Nam W; Llobet A J Am Chem Soc; 2012 Jun; 134(24):9906-9. PubMed ID: 22656065 [TBL] [Abstract][Full Text] [Related]
7. Targeted proton delivery in the catalyzed reduction of oxygen to water by bimetallic pacman porphyrins. Chang CJ; Loh ZH; Shi C; Anson FC; Nocera DG J Am Chem Soc; 2004 Aug; 126(32):10013-20. PubMed ID: 15303875 [TBL] [Abstract][Full Text] [Related]
8. Effect of electron availability on selectivity of O2 reduction by synthetic monometallic Fe porphyrins. Collman JP; Shiryaeva IM; Boulatov R Inorg Chem; 2003 Aug; 42(16):4807-9. PubMed ID: 12895101 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of N(5)-ethyl-flavinium cation formation upon electrochemical oxidation of N(5)-ethyl-4a-hydroxyflavin pseudobase. Sichula V; Hu Y; Mirzakulova E; Manzer SF; Vyas S; Hadad CM; Glusac KD J Phys Chem B; 2010 Jul; 114(29):9452-61. PubMed ID: 20597524 [TBL] [Abstract][Full Text] [Related]
10. Reductive quenching of pyridine linked porphyrins by phenol: a case of proton coupled electron transfer. Prashanthi S; Bangal PR Chem Commun (Camb); 2009 Apr; (13):1757-9. PubMed ID: 19294286 [TBL] [Abstract][Full Text] [Related]
11. Diode or tunnel-diode characteristics? Resolving the catalytic consequences of proton coupled electron transfer in a multi-centered oxidoreductase. Gwyer JD; Richardson DJ; Butt JN J Am Chem Soc; 2005 Nov; 127(43):14964-5. PubMed ID: 16248601 [TBL] [Abstract][Full Text] [Related]
12. Molecular energy and electron transfer assemblies made of self-organized lipid-porphyrin bilayer vesicles. Komatsu T; Moritake M; Tsuchida E Chemistry; 2003 Oct; 9(19):4626-33. PubMed ID: 14566867 [TBL] [Abstract][Full Text] [Related]
13. Four-electron oxygen reduction by brominated cobalt corrole. Schechter A; Stanevsky M; Mahammed A; Gross Z Inorg Chem; 2012 Jan; 51(1):22-4. PubMed ID: 22221278 [TBL] [Abstract][Full Text] [Related]
14. A mechanistic principle for proton pumping by cytochrome c oxidase. Faxén K; Gilderson G; Adelroth P; Brzezinski P Nature; 2005 Sep; 437(7056):286-9. PubMed ID: 16148937 [TBL] [Abstract][Full Text] [Related]
15. Selective 4e-/4H+ O2 reduction by an iron(tetraferrocenyl)porphyrin complex: from proton transfer followed by electron transfer in organic solvent to proton coupled electron transfer in aqueous medium. Mittra K; Chatterjee S; Samanta S; Dey A Inorg Chem; 2013 Dec; 52(24):14317-25. PubMed ID: 24304224 [TBL] [Abstract][Full Text] [Related]
16. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6. Carrell TG; Bourles E; Lin M; Dismukes GC Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176 [TBL] [Abstract][Full Text] [Related]
17. pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase. The role of H2O produced at the oxygen-reduction site. Capitanio G; Martino PL; Capitanio N; De Nitto E; Papa S Biochemistry; 2006 Feb; 45(6):1930-7. PubMed ID: 16460039 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen. Carbajosa S; Malki M; Caillard R; Lopez MF; Palomares FJ; Martín-Gago JA; Rodríguez N; Amils R; Fernández VM; De Lacey AL Biosens Bioelectron; 2010 Oct; 26(2):877-80. PubMed ID: 20678913 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic determination of proton position in the proton-coupled electron transfer pathways of donor-acceptor supramolecule assemblies. Rosenthal J; Hodgkiss JM; Young ER; Nocera DG J Am Chem Soc; 2006 Aug; 128(32):10474-83. PubMed ID: 16895413 [TBL] [Abstract][Full Text] [Related]
20. Proton-coupled O-O activation on a redox platform bearing a hydrogen-bonding scaffold. Chang CJ; Chng LL; Nocera DG J Am Chem Soc; 2003 Feb; 125(7):1866-76. PubMed ID: 12580614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]