These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21699251)

  • 1. Rhodium-catalyzed anti-Markovnikov addition of secondary amines to arylacetylenes at room temperature.
    Sakai K; Kochi T; Kakiuchi F
    Org Lett; 2011 Aug; 13(15):3928-31. PubMed ID: 21699251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodium-Catalyzed Anti-Markovnikov Hydroamination of Aliphatic and Aromatic Terminal Alkynes with Aliphatic Primary Amines.
    Morimoto Y; Kochi T; Kakiuchi F
    J Org Chem; 2021 Sep; 86(18):13143-13152. PubMed ID: 34492192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhodium-catalyzed anti-Markovnikov intermolecular hydroalkoxylation of terminal acetylenes.
    Kondo M; Kochi T; Kakiuchi F
    J Am Chem Soc; 2011 Jan; 133(1):32-4. PubMed ID: 21142159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-Markovnikov addition of both primary and secondary amines to terminal alkynes catalyzed by the TpRh(C2H4)2/PPh3 system.
    Fukumoto Y; Asai H; Shimizu M; Chatani N
    J Am Chem Soc; 2007 Nov; 129(45):13792-3. PubMed ID: 17949090
    [No Abstract]   [Full Text] [Related]  

  • 5. [Ind(2)TiMe(2)]: a general catalyst for the intermolecular hydroamination of alkynes.
    Heutling A; Pohlki F; Doye S
    Chemistry; 2004 Jun; 10(12):3059-71. PubMed ID: 15214090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general study of [(eta5-Cp')2Ti(eta2-Me3SiC2SiMe3)]-catalyzed hydroamination of terminal alkynes: regioselective formation of Markovnikov and anti-Markovnikov products and mechanistic explanation (Cp'=C5H5, C5H4Et, C5Me5).
    Tillack A; Jiao H; Garcia Castro I; Hartung CG; Beller M
    Chemistry; 2004 May; 10(10):2409-20. PubMed ID: 15146514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodium-catalyzed anti-Markovnikov hydroamination of vinylarenes.
    Utsunomiya M; Kuwano R; Kawatsura M; Hartwig JF
    J Am Chem Soc; 2003 May; 125(19):5608-9. PubMed ID: 12733880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodium-catalyzed selective anti-Markovnikov addition of carboxylic acids to alkynes.
    Lumbroso A; Vautravers NR; Breit B
    Org Lett; 2010 Dec; 12(23):5498-501. PubMed ID: 21049947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ruthenium-catalyzed anti-Markovnikov hydroamination of vinylarenes.
    Utsunomiya M; Hartwig JF
    J Am Chem Soc; 2004 Mar; 126(9):2702-3. PubMed ID: 14995178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodium-catalyzed intramolecular, anti-Markovnikov hydroamination. Synthesis of 3-arylpiperidines.
    Takemiya A; Hartwig JF
    J Am Chem Soc; 2006 May; 128(18):6042-3. PubMed ID: 16669666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general bifunctional catalyst for the anti-Markovnikov hydration of terminal alkynes to aldehydes gives enzyme-like rate and selectivity enhancements.
    Grotjahn DB; Lev DA
    J Am Chem Soc; 2004 Oct; 126(39):12232-3. PubMed ID: 15453733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an improved rhodium catalyst for z-selective anti-markovnikov addition of carboxylic acids to terminal alkynes.
    Wei S; Pedroni J; Meißner A; Lumbroso A; Drexler HJ; Heller D; Breit B
    Chemistry; 2013 Sep; 19(36):12067-76. PubMed ID: 23873816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organolathanide-catalyzed regioselective intermolecular hydroamination of alkenes, alkynes, vinylarenes, di- and trivinylarenes, and methylenecyclopropanes. Scope and mechanistic comparison to intramolecular cyclohydroaminations.
    Ryu JS; Li GY; Marks TJ
    J Am Chem Soc; 2003 Oct; 125(41):12584-605. PubMed ID: 14531704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palladium-catalyzed cross-coupling reactions of amines with alkenyl bromides: a new method for the synthesis of enamines and imines.
    Barluenga J; Fernández MA; Aznar F; Valdés C
    Chemistry; 2004 Jan; 10(2):494-507. PubMed ID: 14735518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of enantiomerically enriched propargylamines by copper-catalyzed addition of alkynes to enamines.
    Koradin C; Gommermann N; Polborn K; Knochel P
    Chemistry; 2003 Jun; 9(12):2797-2811. PubMed ID: 12866545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodium(III)-catalyzed arene and alkene C-H bond functionalization leading to indoles and pyrroles.
    Stuart DR; Alsabeh P; Kuhn M; Fagnou K
    J Am Chem Soc; 2010 Dec; 132(51):18326-39. PubMed ID: 21133376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (t-Bu)2PN=P(i-BuNCH2CH2)3N: new efficient ligand for palladium-catalyzed C-N couplings of aryl and heteroaryl bromides and chlorides and for vinyl bromides at room temperature.
    Reddy ChV; Kingston JV; Verkade JG
    J Org Chem; 2008 Apr; 73(8):3047-62. PubMed ID: 18370424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo synthesis of Troc-protected amines: intermolecular rhodium-catalyzed C-H amination with N-tosyloxycarbamates.
    Lebel H; Huard K
    Org Lett; 2007 Feb; 9(4):639-42. PubMed ID: 17243710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly enantioselective and efficient synthesis of flavanones including pinostrobin through the rhodium-catalyzed asymmetric 1,4-addition.
    Korenaga T; Hayashi K; Akaki Y; Maenishi R; Sakai T
    Org Lett; 2011 Apr; 13(8):2022-5. PubMed ID: 21413690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrating C-S bond formation by C-H and S-S bond metathesis. Rhodium-catalyzed alkylthiolation reaction of 1-alkynes with disulfides.
    Arisawa M; Fujimoto K; Morinaka S; Yamaguchi M
    J Am Chem Soc; 2005 Sep; 127(35):12226-7. PubMed ID: 16131192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.