These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21699296)

  • 1. Stimulated light emission and inelastic scattering by a classical linear system of rotating particles.
    Asenjo-Garcia A; Manjavacas A; de Abajo FJ
    Phys Rev Lett; 2011 May; 106(21):213601. PubMed ID: 21699296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vacuum friction in rotating particles.
    Manjavacas A; García de Abajo FJ
    Phys Rev Lett; 2010 Sep; 105(11):113601. PubMed ID: 20867571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotation of two trapped microparticles in vacuum: observation of optically mediated parametric resonances.
    Arita Y; Mazilu M; Vettenburg T; Wright EM; Dholakia K
    Opt Lett; 2015 Oct; 40(20):4751-4. PubMed ID: 26469611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamic simulations of the elastic and inelastic surface scattering of nanoparticles.
    Stace AJ
    Phys Chem Chem Phys; 2014 Feb; 16(7):3077-86. PubMed ID: 24399047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inelastic neutron scattering study of light-induced dynamics of a photosynthetic membrane system.
    Furrer A; Stöckli A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011901. PubMed ID: 20365393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory.
    Costello MJ; Johnsen S; Gilliland KO; Freel CD; Fowler WC
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):303-12. PubMed ID: 17197547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear Zel'dovich Effect: Parametric Amplification from Medium Rotation.
    Faccio D; Wright EM
    Phys Rev Lett; 2017 Mar; 118(9):093901. PubMed ID: 28306294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed quantum/classical calculations of total and differential elastic and rotationally inelastic scattering cross sections for light and heavy reduced masses in a broad range of collision energies.
    Semenov A; Babikov D
    J Chem Phys; 2014 Jan; 140(4):044306. PubMed ID: 25669522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions.
    De Luca S; Todd BD; Hansen JS; Daivis PJ
    Langmuir; 2014 Mar; 30(11):3095-109. PubMed ID: 24575940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic and inelastic light scattering in flow cytometry.
    Kerker M
    Cytometry; 1983 Jul; 4(1):1-10. PubMed ID: 6617390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring the translational and rotational velocities of particles in helical motion using structured light.
    Rosales-Guzmán C; Hermosa N; Belmonte A; Torres JP
    Opt Express; 2014 Jun; 22(13):16504-9. PubMed ID: 24977899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid inelastic-scattering models for particle thermometry: polarized emissions.
    Zhang J; Alexander DR
    Appl Opt; 1992 Nov; 31(33):7140-6. PubMed ID: 20802576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive single particle method for characterizing rapid rotational and translational diffusion and aspect ratio of anisotropic nanoparticles and its application in immunoassays.
    Zhang B; Lan T; Huang X; Dong C; Ren J
    Anal Chem; 2013 Oct; 85(20):9433-8. PubMed ID: 24059451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inelastic scattering from glyoxal: collision kinematics rather than the interaction potential dominates rotational channel selection.
    Clegg SM; Parmenter CS
    J Chem Phys; 2006 Oct; 125(13):133110. PubMed ID: 17029436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of particle rotation on the oblique penetration in granular media.
    Ye X; Wang D; Zheng X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061304. PubMed ID: 23367929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotational transitions and diffraction in D2 scattering from the LiF(001) surface: theory and experiment.
    Valero R; Kroes GJ; Ekinci Y; Toennies JP
    J Chem Phys; 2006 Jun; 124(23):234707. PubMed ID: 16821941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Necessary symmetry conditions for the rotation of light.
    Fernandez-Corbaton I; Vidal X; Tischler N; Molina-Terriza G
    J Chem Phys; 2013 Jun; 138(21):214311. PubMed ID: 23758375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant enhancement of inelastic light scattering in strongly correlated materials.
    Shvaika AM; Vorobyov O; Freericks JK; Devereaux TP
    Phys Rev Lett; 2004 Sep; 93(13):137402. PubMed ID: 15524756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of scattering on a classical two-dimensional artificial atom.
    Peelaers H; Partoens B; Tatyanenko DV; Peeters FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036606. PubMed ID: 17500808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inelastic Scattering of NO by Kr: Rotational Polarization over a Rainbow.
    Chadwick H; Nichols B; Gordon SD; Hornung B; Squires E; Brouard M; Kłos J; Alexander MH; Aoiz FJ; Stolte S
    J Phys Chem Lett; 2014 Oct; 5(19):3296-301. PubMed ID: 26278434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.