These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 21699632)

  • 1. Global transcriptional responses of Bacillus subtilis to xenocoumacin 1.
    Zhou T; Zeng H; Qiu D; Yang X; Wang B; Chen M; Guo L; Wang S
    J Appl Microbiol; 2011 Sep; 111(3):652-62. PubMed ID: 21699632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila.
    Park D; Ciezki K; van der Hoeven R; Singh S; Reimer D; Bode HB; Forst S
    Mol Microbiol; 2009 Sep; 73(5):938-49. PubMed ID: 19682255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global transcriptional response of Bacillus subtilis to treatment with subinhibitory concentrations of antibiotics that inhibit protein synthesis.
    Lin JT; Connelly MB; Amolo C; Otani S; Yaver DS
    Antimicrob Agents Chemother; 2005 May; 49(5):1915-26. PubMed ID: 15855514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CpxR negatively regulates the production of xenocoumacin 1, a dihydroisocoumarin derivative produced by Xenorhabdus nematophila.
    Zhang S; Fang X; Tang Q; Ge J; Wang Y; Zhang X
    Microbiologyopen; 2019 Feb; 8(2):e00674. PubMed ID: 29888873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-seq analysis of antibiotic-producing Bacillus subtilis SC-8 in response to signal peptide PapR of Bacillus cereus.
    Yeo IC; Lee NK; Yang BW; Hahm YT
    Appl Biochem Biotechnol; 2014 Jan; 172(2):580-94. PubMed ID: 24104687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of antimicrobial activity and xenocoumacins biosynthesis by pH in Xenorhabdus nematophila.
    Guo S; Zhang S; Fang X; Liu Q; Gao J; Bilal M; Wang Y; Zhang X
    Microb Cell Fact; 2017 Nov; 16(1):203. PubMed ID: 29141647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the Yield of Xenocoumacin 1 Enabled by In Situ Product Removal.
    Dong Y; Li X; Duan J; Qin Y; Yang X; Ren J; Li G
    ACS Omega; 2020 Aug; 5(32):20391-20398. PubMed ID: 32832792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the yield of Xenocoumacin 1 in Xenorhabdus nematophila YL001 by optimizing the fermentation process.
    Han Y; Zhang S; Wang Y; Gao J; Han J; Yan Z; Ta Y; Wang Y
    Sci Rep; 2024 Jun; 14(1):13506. PubMed ID: 38866882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoplasmic acidification and the benzoate transcriptome in Bacillus subtilis.
    Kitko RD; Cleeton RL; Armentrout EI; Lee GE; Noguchi K; Berkmen MB; Jones BD; Slonczewski JL
    PLoS One; 2009 Dec; 4(12):e8255. PubMed ID: 20011599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering the mechanism of action of novel antibacterial agents through transcriptional profiling of conditional mutants.
    Freiberg C; Fischer HP; Brunner NA
    Antimicrob Agents Chemother; 2005 Feb; 49(2):749-59. PubMed ID: 15673760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens.
    Powers MJ; Sanabria-Valentín E; Bowers AA; Shank EA
    J Bacteriol; 2015 Jul; 197(13):2129-2138. PubMed ID: 25825426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of Bacillus subtilis to enhanced growth at low pressure: up-regulated transcription of des-desKR, encoding the fatty acid desaturase system.
    Fajardo-Cavazos P; Waters SM; Schuerger AC; George S; Marois JJ; Nicholson WL
    Astrobiology; 2012 Mar; 12(3):258-70. PubMed ID: 22416764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial aryl-crowned polyketide from Bacillus subtilis associated with seaweed Anthophycus longifolius.
    Chakraborty K; Thilakan B; Kizhakkekalam VK
    J Appl Microbiol; 2018 Jan; 124(1):108-125. PubMed ID: 29108108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative physiological and transcriptional analysis of weak organic acid stress in Bacillus subtilis.
    Ter Beek A; Wijman JG; Zakrzewska A; Orij R; Smits GJ; Brul S
    Food Microbiol; 2015 Feb; 45(Pt A):71-82. PubMed ID: 25481064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential gene expression to investigate the effect of (5Z)-4-bromo- 5-(bromomethylene)-3-butyl-2(5H)-furanone on Bacillus subtilis.
    Ren D; Bedzyk LA; Setlow P; England DF; Kjelleberg S; Thomas SM; Ye RW; Wood TK
    Appl Environ Microbiol; 2004 Aug; 70(8):4941-9. PubMed ID: 15294834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the Production of Xenocoumacin 1 in
    Qin Y; Jia F; Zheng X; Li X; Duan J; Li B; Shen H; Yang X; Ren J; Li G
    J Agric Food Chem; 2023 Jun; 71(23):8959-8968. PubMed ID: 37278378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global transcriptional response of Bacillus subtilis to heat shock.
    Helmann JD; Wu MF; Kobel PA; Gamo FJ; Wilson M; Morshedi MM; Navre M; Paddon C
    J Bacteriol; 2001 Dec; 183(24):7318-28. PubMed ID: 11717291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation of gene expression in Bacillus subtilis samples of fermentation replicates.
    Zhou Y; Yu WB; Ye BC
    Bioprocess Biosyst Eng; 2011 Jun; 34(5):569-79. PubMed ID: 21225286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microarray Studies in Bacillus subtilis.
    Kocabaş P; Calik P; Calik G; Ozdamar TH
    Biotechnol J; 2009 Jul; 4(7):1012-27. PubMed ID: 19618384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide.
    Wenzel M; Schriek P; Prochnow P; Albada HB; Metzler-Nolte N; Bandow JE
    Biochim Biophys Acta; 2016 May; 1858(5):1004-11. PubMed ID: 26603779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.