These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
57 related articles for article (PubMed ID: 2169973)
1. [Neurotoxicity in mice due to cysteine-rich parts of visna virus and HIV-1 Tat proteins]. Gourdou I; Mabrouk K; Harkiss G; Marchot P; Watt N; Hery F; Vigne R C R Acad Sci III; 1990; 311(4):149-55. PubMed ID: 2169973 [TBL] [Abstract][Full Text] [Related]
2. The basic domain of the lentiviral Tat protein is responsible for damages in mouse brain: involvement of cytokines. Philippon V; Vellutini C; Gambarelli D; Harkiss G; Arbuthnott G; Metzger D; Roubin R; Filippi P Virology; 1994 Dec; 205(2):519-29. PubMed ID: 7526541 [TBL] [Abstract][Full Text] [Related]
3. Neurotoxicity of peptide analogues of the transactivating protein tat from Maedi-Visna virus and human immunodeficiency virus. Hayman M; Arbuthnott G; Harkiss G; Brace H; Filippi P; Philippon V; Thomson D; Vigne R; Wright A Neuroscience; 1993 Mar; 53(1):1-6. PubMed ID: 7682293 [TBL] [Abstract][Full Text] [Related]
4. Bovine immunodeficiency virus tat gene: cloning of two distinct cDNAs and identification, characterization, and immunolocalization of the tat gene products. Fong SE; Greenwood JD; Williamson JC; Derse D; Pallansch LA; Copeland T; Rasmussen L; Mentzer A; Nagashima K; Tobin G; Gonda MA Virology; 1997 Jul; 233(2):339-57. PubMed ID: 9217057 [TBL] [Abstract][Full Text] [Related]
5. Selective side-chain modification of cysteine and arginine residues blocks pathogenic activity of HIV-1-Tat functional peptides. Devadas K; Boykins RA; Hardegen NJ; Philp D; Kleinman HK; Osa EO; Wang J; Clouse KA; Wahl LM; Hewlett IK; Rappaport J; Yamada KM; Dhawan S Peptides; 2006 Apr; 27(4):611-21. PubMed ID: 16256245 [TBL] [Abstract][Full Text] [Related]
6. Maedi-visna virus and its relationship to human immunodeficiency virus. Thormar H AIDS Rev; 2005; 7(4):233-45. PubMed ID: 16425963 [TBL] [Abstract][Full Text] [Related]
7. Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C Tat of human neurons: significance of dicysteine C30C31 motif. Mishra M; Vetrivel S; Siddappa NB; Ranga U; Seth P Ann Neurol; 2008 Mar; 63(3):366-76. PubMed ID: 18074388 [TBL] [Abstract][Full Text] [Related]
8. DNA immunization with HIV-1 tat mutated in the trans activation domain induces humoral and cellular immune responses against wild-type Tat. Caselli E; Betti M; Grossi MP; Balboni PG; Rossi C; Boarini C; Cafaro A; Barbanti-Brodano G; Ensoli B; Caputo A J Immunol; 1999 May; 162(9):5631-8. PubMed ID: 10228047 [TBL] [Abstract][Full Text] [Related]
9. Antibodies against a multiple-peptide conjugate comprising chemically modified human immunodeficiency virus type-1 functional Tat peptides inhibit infection. Devadas K; Boykins RA; Hewlett IK; Wood OL; Clouse KA; Yamada KM; Dhawan S Peptides; 2007 Mar; 28(3):496-504. PubMed ID: 17188401 [TBL] [Abstract][Full Text] [Related]
10. Homonuclear (1)H-NMR assignment and structural characterization of human immunodeficiency virus type 1 Tat Mal protein. Grégoire C; Péloponèse JM; Esquieu D; Opi S; Campbell G; Solomiac M; Lebrun E; Lebreton J; Loret EP Biopolymers; 2001; 62(6):324-35. PubMed ID: 11857271 [TBL] [Abstract][Full Text] [Related]
11. Tat mediates transcriptional activation of HIV-1 gene in vitro. West M; Hoover T; Kung H; Raziuddin Indian J Biochem Biophys; 1995 Dec; 32(6):351-5. PubMed ID: 8714203 [TBL] [Abstract][Full Text] [Related]
12. Structural studies of HIV-1 Tat protein. Bayer P; Kraft M; Ejchart A; Westendorp M; Frank R; Rösch P J Mol Biol; 1995 Apr; 247(4):529-35. PubMed ID: 7723010 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of HIV-1 transcription and virus replication using soluble Tat peptide analogs. Kashanchi F; Sadaie MR; Brady JN Virology; 1997 Jan; 227(2):431-8. PubMed ID: 9018142 [TBL] [Abstract][Full Text] [Related]
14. The visna transcriptional activator Tat: effects on the viral LTR and on cellular genes. Neuveut C; Vigne R; Clements JE; Sire J Virology; 1993 Nov; 197(1):236-44. PubMed ID: 8212559 [TBL] [Abstract][Full Text] [Related]
15. The acidic amino-terminal region of the HIV-1 Tat protein constitutes an essential activating domain. Rappaport J; Lee SJ; Khalili K; Wong-Staal F New Biol; 1989 Oct; 1(1):101-10. PubMed ID: 2562188 [TBL] [Abstract][Full Text] [Related]
16. A selection system to study protein-RNA interactions: functional display of HIV-1 Tat protein on filamentous bacteriophage M13. Hoffmann S; Willbold D Biochem Biophys Res Commun; 1997 Jun; 235(3):806-11. PubMed ID: 9207243 [TBL] [Abstract][Full Text] [Related]
17. Astrocyte activation and dysfunction and neuron death by HIV-1 Tat expression in astrocytes. Zhou BY; Liu Y; Kim Bo; Xiao Y; He JJ Mol Cell Neurosci; 2004 Nov; 27(3):296-305. PubMed ID: 15519244 [TBL] [Abstract][Full Text] [Related]
18. Permeability of the blood-brain barrier to HIV-1 Tat. Banks WA; Robinson SM; Nath A Exp Neurol; 2005 May; 193(1):218-27. PubMed ID: 15817280 [TBL] [Abstract][Full Text] [Related]
19. GA/GC-rich sequence confers Tat responsiveness to human neurotropic virus promoter, JCVL, in cells derived from central nervous system. Chowdhury M; Kundu M; Khalili K Oncogene; 1993 Apr; 8(4):887-92. PubMed ID: 8384357 [TBL] [Abstract][Full Text] [Related]
20. HIV-1 Tat inhibits long-term potentiation and attenuates spatial learning [corrected]. Li ST; Matsushita M; Moriwaki A; Saheki Y; Lu YF; Tomizawa K; Wu HY; Terada H; Matsui H Ann Neurol; 2004 Mar; 55(3):362-71. PubMed ID: 14991814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]