BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

898 related articles for article (PubMed ID: 21699927)

  • 41. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation.
    Hector RE; Mertens JA; Bowman MJ; Nichols NN; Cotta MA; Hughes SR
    Yeast; 2011 Sep; 28(9):645-60. PubMed ID: 21809385
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters.
    Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU
    Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic pathway analysis of the xylose-metabolizing yeast protoplast fusant ZLYRHZ7.
    Ge J; Du R; Song G; Zhang Y; Ping W
    J Biosci Bioeng; 2017 Oct; 124(4):386-391. PubMed ID: 28527826
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis.
    Khattab SM; Watanabe S; Saimura M; Kodaki T
    Biochem Biophys Res Commun; 2011 Jan; 404(2):634-7. PubMed ID: 21146502
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol.
    Saleh AA; Watanabe S; Annaluru N; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):279-80. PubMed ID: 17150926
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01.
    Xu JR; Zhao XQ; Liu CG; Bai FW
    Protein Pept Lett; 2018; 25(2):202-207. PubMed ID: 29359658
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering.
    Zha J; Shen M; Hu M; Song H; Yuan Y
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):27-39. PubMed ID: 24113893
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ethanol production from xylose by a recombinant Candida utilis strain expressing protein-engineered xylose reductase and xylitol dehydrogenase.
    Tamakawa H; Ikushima S; Yoshida S
    Biosci Biotechnol Biochem; 2011; 75(10):1994-2000. PubMed ID: 21979076
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054.
    Wahlbom CF; van Zyl WH; Jönsson LJ; Hahn-Hägerdal B; Otero RR
    FEMS Yeast Res; 2003 May; 3(3):319-26. PubMed ID: 12689639
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.
    Jo JH; Oh SY; Lee HS; Park YC; Seo JH
    Biotechnol J; 2015 Dec; 10(12):1935-43. PubMed ID: 26470683
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus.
    Zhang B; Li L; Zhang J; Gao X; Wang D; Hong J
    J Ind Microbiol Biotechnol; 2013 Apr; 40(3-4):305-16. PubMed ID: 23392758
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain.
    Pitkänen JP; Rintala E; Aristidou A; Ruohonen L; Penttilä M
    Appl Microbiol Biotechnol; 2005 Jun; 67(6):827-37. PubMed ID: 15630585
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption.
    Scalcinati G; Otero JM; Van Vleet JR; Jeffries TW; Olsson L; Nielsen J
    FEMS Yeast Res; 2012 Aug; 12(5):582-97. PubMed ID: 22487265
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-temperature ethanol production by a series of recombinant xylose-fermenting Kluyveromyces marxianus strains.
    Suzuki T; Hoshino T; Matsushika A
    Enzyme Microb Technol; 2019 Oct; 129():109359. PubMed ID: 31307575
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate.
    Johansson B; Christensson C; Hobley T; Hahn-Hägerdal B
    Appl Environ Microbiol; 2001 Sep; 67(9):4249-55. PubMed ID: 11526030
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fine-tuning of xylose metabolism in genetically engineered Saccharomyces cerevisiae by scattered integration of xylose assimilation genes.
    Zuo Q; Zhao XQ; Xiong L; Liu HJ; Xu YH; Hu SY; Ma ZY; Zhu QW; Bai FW
    Biochem Biophys Res Commun; 2013 Oct; 440(2):241-4. PubMed ID: 24051089
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion.
    Hector RE; Dien BS; Cotta MA; Qureshi N
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1193-202. PubMed ID: 21107642
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes.
    Konishi J; Fukuda A; Mutaguchi K; Uemura T
    Biotechnol Lett; 2015 Aug; 37(8):1623-30. PubMed ID: 25994575
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation.
    Walfridsson M; Anderlund M; Bao X; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 1997 Aug; 48(2):218-24. PubMed ID: 9299780
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae.
    Peng B; Shen Y; Li X; Chen X; Hou J; Bao X
    Metab Eng; 2012 Jan; 14(1):9-18. PubMed ID: 22178745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.