These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 21700226)

  • 1. NanoRNAs prime transcription initiation in vivo.
    Goldman SR; Sharp JS; Vvedenskaya IO; Livny J; Dove SL; Nickels BE
    Mol Cell; 2011 Jun; 42(6):817-25. PubMed ID: 21700226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth phase-dependent control of transcription start site selection and gene expression by nanoRNAs.
    Vvedenskaya IO; Sharp JS; Goldman SR; Kanabar PN; Livny J; Dove SL; Nickels BE
    Genes Dev; 2012 Jul; 26(13):1498-507. PubMed ID: 22751503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NanoRNAs: a class of small RNAs that can prime transcription initiation in bacteria.
    Nickels BE; Dove SL
    J Mol Biol; 2011 Oct; 412(5):772-81. PubMed ID: 21704045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new way to start: nanoRNA-mediated priming of transcription initiation.
    Nickels BE
    Transcription; 2012; 3(6):300-4. PubMed ID: 23117822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligoribonuclease is required for the type III secretion system and pathogenesis of Pseudomonas aeruginosa.
    Chen G; Zhao Q; Zhu F; Chen R; Jin Y; Liu C; Pan X; Jin S; Wu W; Cheng Z
    Microbiol Res; 2016; 188-189():90-96. PubMed ID: 27296966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudomonas aeruginosa Oligoribonuclease Contributes to Tolerance to Ciprofloxacin by Regulating Pyocin Biosynthesis.
    Chen F; Chen G; Liu Y; Jin Y; Cheng Z; Liu Y; Yang L; Jin S; Wu W
    Antimicrob Agents Chemother; 2017 Mar; 61(3):. PubMed ID: 28052848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DksA represses ribosomal gene transcription in Pseudomonas aeruginosa by interacting with RNA polymerase on ribosomal promoters.
    Perron K; Comte R; van Delden C
    Mol Microbiol; 2005 May; 56(4):1087-102. PubMed ID: 15853892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA polymerases from Pseudomonas aeruginosa and Pseudomonas syringae respond to Escherichia coli activator proteins.
    Gao JG; Gussin GN
    J Bacteriol; 1991 Jan; 173(1):394-7. PubMed ID: 1898924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa.
    Cohen D; Mechold U; Nevenzal H; Yarmiyhu Y; Randall TE; Bay DC; Rich JD; Parsek MR; Kaever V; Harrison JJ; Banin E
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11359-64. PubMed ID: 26305928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization and transcription of the principal sigma gene (rpoDA) of Pseudomonas aeruginosa PAO1: involvement of a sigma 32-like RNA polymerase in rpoDA gene expression.
    Fujita M; Tanaka K; Takahashi H; Amemura A
    J Bacteriol; 1993 Feb; 175(4):1069-74. PubMed ID: 8432700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of PvdS, an iron starvation sigma factor of Pseudomonas aeruginosa.
    Leoni L; Orsi N; de Lorenzo V; Visca P
    J Bacteriol; 2000 Mar; 182(6):1481-91. PubMed ID: 10692351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism.
    Boucher JC; Schurr MJ; Deretic V
    Mol Microbiol; 2000 Apr; 36(2):341-51. PubMed ID: 10792721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Phage-Encoded
    Ceyssens PJ; De Smet J; Wagemans J; Akulenko N; Klimuk E; Hedge S; Voet M; Hendrix H; Paeshuyse J; Landuyt B; Xu H; Blanchard J; Severinov K; Lavigne R
    Viruses; 2020 Sep; 12(9):. PubMed ID: 32887488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fleQ, the gene encoding the major flagellar regulator of Pseudomonas aeruginosa, is sigma70 dependent and is downregulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein.
    Dasgupta N; Ferrell EP; Kanack KJ; West SE; Ramphal R
    J Bacteriol; 2002 Oct; 184(19):5240-50. PubMed ID: 12218009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa.
    Schurr MJ; Deretic V
    Mol Microbiol; 1997 Apr; 24(2):411-20. PubMed ID: 9159526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site.
    Jyot J; Dasgupta N; Ramphal R
    J Bacteriol; 2002 Oct; 184(19):5251-60. PubMed ID: 12218010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dormancy-specific regulator, SutA, is intrinsically disordered and modulates transcription initiation in Pseudomonas aeruginosa.
    Bergkessel M; Babin BM; VanderVelde D; Sweredoski MJ; Moradian A; Eggleston-Rangel R; Hess S; Tirrell DA; Artsimovitch I; Newman DK
    Mol Microbiol; 2019 Sep; 112(3):992-1009. PubMed ID: 31254296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of DksA, GreA, and GreB on transcription initiation: insights into the mechanisms of factors that bind in the secondary channel of RNA polymerase.
    Rutherford ST; Lemke JJ; Vrentas CE; Gaal T; Ross W; Gourse RL
    J Mol Biol; 2007 Mar; 366(4):1243-57. PubMed ID: 17207814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro interactions of Pseudomonas RNA polymerases with tac and RNA I promoters.
    Fujita M; Amemura A
    Biosci Biotechnol Biochem; 1992 Oct; 56(10):1644-8. PubMed ID: 1282050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ExsA recruits RNA polymerase to an extended -10 promoter by contacting region 4.2 of sigma-70.
    Vakulskas CA; Brutinel ED; Yahr TL
    J Bacteriol; 2010 Jul; 192(14):3597-607. PubMed ID: 20453093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.