BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 21700372)

  • 1. Arsenic distribution in soils and plants of an arsenic impacted former mining area.
    Otones V; Álvarez-Ayuso E; García-Sánchez A; Santa Regina I; Murciego A
    Environ Pollut; 2011 Oct; 159(10):2637-47. PubMed ID: 21700372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities.
    Álvarez-Ayuso E; Otones V; Murciego A; García-Sánchez A; Regina IS
    Sci Total Environ; 2012 Nov; 439():35-43. PubMed ID: 23063636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic distribution in a pasture area impacted by past mining activities.
    Abad-Valle P; Álvarez-Ayuso E; Murciego A; Muñoz-Centeno LM; Alonso-Rojo P; Villar-Alonso P
    Ecotoxicol Environ Saf; 2018 Jan; 147():228-237. PubMed ID: 28846927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A methodological approach to evaluate arsenic speciation and bioaccumulation in different plant species from two highly polluted mining areas.
    Larios R; Fernández-Martínez R; Lehecho I; Rucandio I
    Sci Total Environ; 2012 Jan; 414():600-7. PubMed ID: 22154482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Levels of toxic arsenic species in native terrestrial plants from soils polluted by former mining activities.
    García-Salgado S; Quijano MÁ
    Environ Sci Process Impacts; 2014 Mar; 16(3):604-12. PubMed ID: 24513726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China.
    Xiao T; Guha J; Boyle D; Liu CQ; Chen J
    Sci Total Environ; 2004 Jan; 318(1-3):223-44. PubMed ID: 14654287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic distribution in soils and rye plants of a cropland located in an abandoned mining area.
    Álvarez-Ayuso E; Abad-Valle P; Murciego A; Villar-Alonso P
    Sci Total Environ; 2016 Jan; 542(Pt A):238-46. PubMed ID: 26519583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and mobility of arsenic in soils of a mining area (Western Spain).
    García-Sánchez A; Alonso-Rojo P; Santos-Francés F
    Sci Total Environ; 2010 Sep; 408(19):4194-201. PubMed ID: 20538319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the pre-Andean zones in Chile.
    Díaz O; Tapia Y; Pastene R; Montes S; Núñez N; Vélez D; Montoro R
    Bull Environ Contam Toxicol; 2011 Jun; 86(6):666-9. PubMed ID: 21484519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Mediterranean shrubs for the phytoremediation of a soil impacted by pyritic wastes in Southern Spain: a field experiment.
    Moreno-Jiménez E; Vázquez S; Carpena-Ruiz RO; Esteban E; Peñalosa JM
    J Environ Manage; 2011 Jun; 92(6):1584-90. PubMed ID: 21353375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora.
    Moreno-Jiménez E; Peñalosa JM; Manzano R; Carpena-Ruiz RO; Gamarra R; Esteban E
    J Hazard Mater; 2009 Mar; 162(2-3):854-9. PubMed ID: 18603359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic levels in the soils and macrophytes of the 'Entremuros' after the Aznalcóllar mine spill.
    Taggart MA; Carlisle M; Pain DJ; Williams R; Green D; Osborn D; Meharg AA
    Environ Pollut; 2005 Jan; 133(1):129-38. PubMed ID: 15327863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.
    Wei CY; Chen TB
    Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury in soils and plants in an abandoned cinnabar mining area (SW Spain).
    García-Sánchez A; Murciego A; Alvarez-Ayuso E; Regina IS; Rodríguez-González MA
    J Hazard Mater; 2009 Sep; 168(2-3):1319-24. PubMed ID: 19345007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China.
    Liao XY; Chen TB; Xie H; Liu YR
    Environ Int; 2005 Aug; 31(6):791-8. PubMed ID: 15979720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications.
    Freitas H; Prasad MN; Pratas J
    Environ Int; 2004 Mar; 30(1):65-72. PubMed ID: 14664866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal concentrations in the soils and native plants surrounding the old flotation tailings pond of the copper mining and smelting complex Bor (Serbia).
    Antonijević MM; Dimitrijević MD; Milić SM; Nujkić MM
    J Environ Monit; 2012 Mar; 14(3):866-77. PubMed ID: 22314513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elemental analysis of soils and Salix polaris in the town of Pyramiden and its surroundings (Svalbard).
    Krajcarová L; Novotný K; Chattová B; Elster J
    Environ Sci Pollut Res Int; 2016 May; 23(10):10124-37. PubMed ID: 26867690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area.
    Okkenhaug G; Zhu YG; Luo L; Lei M; Li X; Mulder J
    Environ Pollut; 2011 Oct; 159(10):2427-34. PubMed ID: 21767897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A; Karczewska A
    Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.