These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21700671)

  • 1. eResponseNet: a package prioritizing candidate disease genes through cellular pathways.
    Huang J; Liu Y; Zhang W; Yu H; Han JD
    Bioinformatics; 2011 Aug; 27(16):2319-20. PubMed ID: 21700671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haplotype synthesis analysis reveals functional variants underlying known genome-wide associated susceptibility loci.
    Lacour A; Ellinghaus D; Schreiber S; Franke A; Becker T
    Bioinformatics; 2016 Jul; 32(14):2136-42. PubMed ID: 27153721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shared genetic etiology underlying Alzheimer's disease and type 2 diabetes.
    Hao K; Di Narzo AF; Ho L; Luo W; Li S; Chen R; Li T; Dubner L; Pasinetti GM
    Mol Aspects Med; 2015; 43-44():66-76. PubMed ID: 26116273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HAPGEN2: simulation of multiple disease SNPs.
    Su Z; Marchini J; Donnelly P
    Bioinformatics; 2011 Aug; 27(16):2304-5. PubMed ID: 21653516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pinpointing disease genes through phenomic and genomic data fusion.
    Jiang R; Wu M; Li L
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S3. PubMed ID: 25708473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What is the probability of replicating a statistically significant association in genome-wide association studies?
    Jiang W; Xue JH; Yu W
    Brief Bioinform; 2017 Nov; 18(6):928-939. PubMed ID: 27687799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide association studies (GWAS): impact on elucidating the aetiology of diabetes.
    Hakonarson H; Grant SF
    Diabetes Metab Res Rev; 2011 Oct; 27(7):685-96. PubMed ID: 21630414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic markers of type 2 diabetes: Progress in genome-wide association studies and clinical application for risk prediction.
    Wang X; Strizich G; Hu Y; Wang T; Kaplan RC; Qi Q
    J Diabetes; 2016 Jan; 8(1):24-35. PubMed ID: 26119161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying disease-associated SNP clusters via contiguous outlier detection.
    Yang C; Zhou X; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2011 Sep; 27(18):2578-85. PubMed ID: 21784794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TS: a powerful truncated test to detect novel disease associated genes using publicly available gWAS summary data.
    Zhang J; Guo X; Gonzales S; Yang J; Wang X
    BMC Bioinformatics; 2020 May; 21(1):172. PubMed ID: 32366212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. snpGeneSets: An R Package for Genome-Wide Study Annotation.
    Mei H; Li L; Jiang F; Simino J; Griswold M; Mosley T; Liu S
    G3 (Bethesda); 2016 Dec; 6(12):4087-4095. PubMed ID: 27807048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MendelVar: gene prioritization at GWAS loci using phenotypic enrichment of Mendelian disease genes.
    Sobczyk MK; Gaunt TR; Paternoster L
    Bioinformatics; 2021 Apr; 37(1):1-8. PubMed ID: 33836063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational analyses of type 2 diabetes-associated loci identified by genome-wide association studies.
    Cheng M; Liu X; Yang M; Han L; Xu A; Huang Q
    J Diabetes; 2017 Apr; 9(4):362-377. PubMed ID: 27121852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prioritizing candidate disease genes by network-based boosting of genome-wide association data.
    Lee I; Blom UM; Wang PI; Shim JE; Marcotte EM
    Genome Res; 2011 Jul; 21(7):1109-21. PubMed ID: 21536720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PALM: a powerful and adaptive latent model for prioritizing risk variants with functional annotations.
    Yu X; Xiao J; Cai M; Jiao Y; Wan X; Liu J; Yang C
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36744920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Type-2 diabetes-associated variants with cross-trait relevance: Post-GWAs strategies for biological function interpretation.
    Frau F; Crowther D; Ruetten H; Allebrandt KV
    Mol Genet Metab; 2017 May; 121(1):43-50. PubMed ID: 28385534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using genome-wide pathway analysis to unravel the etiology of complex diseases.
    Elbers CC; van Eijk KR; Franke L; Mulder F; van der Schouw YT; Wijmenga C; Onland-Moret NC
    Genet Epidemiol; 2009 Jul; 33(5):419-31. PubMed ID: 19235186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient multivariate analysis algorithms for longitudinal genome-wide association studies.
    Ning C; Wang D; Zhou L; Wei J; Liu Y; Kang H; Zhang S; Zhou X; Xu S; Liu JF
    Bioinformatics; 2019 Dec; 35(23):4879-4885. PubMed ID: 31070732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. i-GSEA4GWAS: a web server for identification of pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to genome-wide association study.
    Zhang K; Cui S; Chang S; Zhang L; Wang J
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W90-5. PubMed ID: 20435672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential promoter activity by nucleotide substitution at a type 2 diabetes genome-wide association study signal upstream of the wolframin gene.
    Ryu J; Lee C
    J Diabetes; 2016 Mar; 8(2):253-9. PubMed ID: 25800097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.