BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21700676)

  • 1. ODORactor: a web server for deciphering olfactory coding.
    Liu X; Su X; Wang F; Huang Z; Wang Q; Li Z; Zhang R; Wu L; Pan Y; Chen Y; Zhuang H; Chen G; Shi T; Zhang J
    Bioinformatics; 2011 Aug; 27(16):2302-3. PubMed ID: 21700676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ORDB, HORDE, ODORactor and other on-line knowledge resources of olfactory receptor-odorant interactions.
    Marenco L; Wang R; McDougal R; Olender T; Twik M; Bruford E; Liu X; Zhang J; Lancet D; Shepherd G; Crasto C
    Database (Oxford); 2016; 2016():. PubMed ID: 27694208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosite: a method for predicting allosteric sites.
    Huang W; Lu S; Huang Z; Liu X; Mou L; Luo Y; Zhao Y; Liu Y; Chen Z; Hou T; Zhang J
    Bioinformatics; 2013 Sep; 29(18):2357-9. PubMed ID: 23842804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OdoriFy: A conglomerate of artificial intelligence-driven prediction engines for olfactory decoding.
    Gupta R; Mittal A; Agrawal V; Gupta S; Gupta K; Jain RR; Garg P; Mohanty SK; Sogani R; Chhabra HS; Gautam V; Mishra T; Sengupta D; Ahuja G
    J Biol Chem; 2021 Aug; 297(2):100956. PubMed ID: 34265305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pred-O3, a web server to predict molecules, olfactory receptors and odor relationships.
    Ollitrault G; Achebouche R; Dreux A; Murail S; Audouze K; Tromelin A; Taboureau O
    Nucleic Acids Res; 2024 Jul; 52(W1):W507-W512. PubMed ID: 38661190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OlfactionBase: a repository to explore odors, odorants, olfactory receptors and odorant-receptor interactions.
    Sharma A; Saha BK; Kumar R; Varadwaj PK
    Nucleic Acids Res; 2022 Jan; 50(D1):D678-D686. PubMed ID: 34469532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alloscore: a method for predicting allosteric ligand-protein interactions.
    Li S; Shen Q; Su M; Liu X; Lu S; Chen Z; Wang R; Zhang J
    Bioinformatics; 2016 May; 32(10):1574-6. PubMed ID: 26803160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo identification of eugenol-responsive and muscone-responsive mouse odorant receptors.
    McClintock TS; Adipietro K; Titlow WB; Breheny P; Walz A; Mombaerts P; Matsunami H
    J Neurosci; 2014 Nov; 34(47):15669-78. PubMed ID: 25411495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepOlf: Deep Neural Network Based Architecture for Predicting Odorants and Their Interacting Olfactory Receptors.
    Sharma A; Kumar R; Semwal R; Aier I; Tyagi P; Varadwaj PK
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):418-428. PubMed ID: 32750862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Odorant-binding proteins and xenobiotic metabolizing enzymes: implications in olfactory perireceptor events.
    Heydel JM; Coelho A; Thiebaud N; Legendre A; Le Bon AM; Faure P; Neiers F; Artur Y; Golebiowski J; Briand L
    Anat Rec (Hoboken); 2013 Sep; 296(9):1333-45. PubMed ID: 23907783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hit map-based statistical method to predict best ligands for orphan olfactory receptors: natural key odorants versus "lock picks".
    Krautwurst D; Kotthoff M
    Methods Mol Biol; 2013; 1003():85-97. PubMed ID: 23585035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammalian olfactory receptors: molecular mechanisms of odorant detection, 3D-modeling, and structure-activity relationships.
    Persuy MA; Sanz G; Tromelin A; Thomas-Danguin T; Gibrat JF; Pajot-Augy E
    Prog Mol Biol Transl Sci; 2015; 130():1-36. PubMed ID: 25623335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining In Vivo and In Vitro Approaches To Identify Human Odorant Receptors Responsive to Food Odorants.
    Armelin-Correa LM; Malnic B
    J Agric Food Chem; 2018 Mar; 66(10):2214-2218. PubMed ID: 28054485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between molecular structure and perceived odor quality of ligands for a human olfactory receptor.
    Sanz G; Thomas-Danguin T; Hamdani el H; Le Poupon C; Briand L; Pernollet JC; Guichard E; Tromelin A
    Chem Senses; 2008 Sep; 33(7):639-53. PubMed ID: 18603653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino-acid changes acquired during evolution by olfactory receptor 912-93 modify the specificity of odorant recognition.
    Gaillard I; Rouquier S; Chavanieu A; Mollard P; Giorgi D
    Hum Mol Genet; 2004 Apr; 13(7):771-80. PubMed ID: 14962981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Making sense of olfaction through predictions of the 3-D structure and function of olfactory receptors.
    Floriano WB; Vaidehi N; Goddard WA
    Chem Senses; 2004 May; 29(4):269-90. PubMed ID: 15150141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the Receptor Repertoire Encoding Specific Odorants by Time-Lapse Single-Cell Array Cytometry.
    Suzuki M; Yoshimoto N; Shimono K; Kuroda S
    Sci Rep; 2016 Feb; 6():19934. PubMed ID: 26832639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sense of smell: molecular basis of odorant recognition.
    Zarzo M
    Biol Rev Camb Philos Soc; 2007 Aug; 82(3):455-79. PubMed ID: 17624963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural determinants of odorant recognition by the human olfactory receptors OR1A1 and OR1A2.
    Schmiedeberg K; Shirokova E; Weber HP; Schilling B; Meyerhof W; Krautwurst D
    J Struct Biol; 2007 Sep; 159(3):400-12. PubMed ID: 17601748
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.