These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 2170091)
1. [The role of proteins of membrane skeleton of non-nucleated erythrocytes in the functioning of membrane enzymes]. Kazennov AM; Maslova MN; Shalabodov AD Dokl Akad Nauk SSSR; 1990; 312(1):223-6. PubMed ID: 2170091 [No Abstract] [Full Text] [Related]
2. [The activity of transport ATPases and the characteristics of the protein-lipid composition of the membranes of anuclear erythrocytes in a number of mammals]. Matskevich IuA; Kazennov AM; Maslova MN Zh Evol Biokhim Fiziol; 1994; 30(4):497-504. PubMed ID: 7863741 [TBL] [Abstract][Full Text] [Related]
3. [A comparative study of the intracellular regulation of transport ATPase activity in non-nucleated erythrocytes]. Matskevich IuA; Kazennov AM; Shalabodov AD Zh Evol Biokhim Fiziol; 1994; 30(5):690-7. PubMed ID: 8721313 [TBL] [Abstract][Full Text] [Related]
4. Activity of Na-K-ATPase and Ca-Mg-ATPase in red blood cell membranes of lead-depleted rats. Eder K; Reichlmayr-Lais AM; Kirchgessner M J Trace Elem Electrolytes Health Dis; 1990 Mar; 4(1):21-4. PubMed ID: 1967007 [TBL] [Abstract][Full Text] [Related]
5. The role of membrane-associated enzymes in regulation of erythrocyte shape and deformability. Mohandas N; Shohet SB Clin Haematol; 1981 Feb; 10(1):223-37. PubMed ID: 6260407 [No Abstract] [Full Text] [Related]
6. ATPase and acetylcholinesterase activities in erythrocyte membranes after incubation with glucose and in streptozotocin diabetic rats. Henschel S; Henschel L; Lober M; Krantz S Exp Clin Endocrinol; 1988 Mar; 91(1):20-6. PubMed ID: 2836222 [TBL] [Abstract][Full Text] [Related]
7. Whether or not divalent cation dependent ATPase activities associated with erythrocyte EDTA-membrane fragments may utilize free ATP4- or MG-ATP2- complex. Scutari G; Ballestrin G Boll Soc Ital Biol Sper; 1982 Apr; 58(8):437-43. PubMed ID: 6124262 [No Abstract] [Full Text] [Related]
8. [The effect of hemolysate and calcium ions on transport ATPase activity in guinea pig erythrocytes]. Matskevich IuA; Kazennov AM Zh Evol Biokhim Fiziol; 1994; 30(6):738-45. PubMed ID: 8721317 [TBL] [Abstract][Full Text] [Related]
9. R 24571: a new powerful inhibitor of red blood cell Ca++-transport ATPase and of calmodulin-regulated functions. Gietzen K; Wüthrich A; Bader H Biochem Biophys Res Commun; 1981 Jul; 101(2):418-25. PubMed ID: 6272758 [No Abstract] [Full Text] [Related]
10. [Changes in acetylcholinesterase and ATPase activity and certain structural features of the erythrocyte membrane in experimental myocardial ischemia]. Chernukh AM; Kopteva LA; Shevchenko AS Biull Eksp Biol Med; 1980 Sep; 90(9):270-2. PubMed ID: 6252988 [TBL] [Abstract][Full Text] [Related]
11. [Variations in ATPase activities of erythrocytic membrane and endocytic ionic levels in cases with pregnancy induced hypertension]. Dai LT; Chou SH Zhonghua Fu Chan Ke Za Zhi; 1994 Jul; 29(7):411-3, 445. PubMed ID: 8001418 [TBL] [Abstract][Full Text] [Related]
12. A protein inhibitor of erythrocyte membrane (Ca2+ + Mg2+)-ATPase. Lee KS; Au KS Biochim Biophys Acta; 1983 Jan; 742(1):54-62. PubMed ID: 6130792 [No Abstract] [Full Text] [Related]
13. Effects of ouabain on ATPase activities in human erythrocyte membranes. Li JC; Hinds TR; Vincenzi FF Proc West Pharmacol Soc; 1990; 33():143-8. PubMed ID: 2177192 [No Abstract] [Full Text] [Related]
14. [Effects of furyl-dihydropyridines I on lipid peroxides of ischemic myocardium and ATPases activity of erythrocyte membranes in rats]. Liu DQ; Pang ZQ; Zhao DH; Sheng BH Zhongguo Yao Li Xue Bao; 1991 May; 12(3):253-6. PubMed ID: 1664169 [TBL] [Abstract][Full Text] [Related]
15. The enzymes of the red blood cell plasma membrane. Delaunay J Biomedicine; 1977 Dec; 26(6):357-61. PubMed ID: 146525 [TBL] [Abstract][Full Text] [Related]
16. Red blood cell calmodulin and Ca2+ pump ATPase: preliminary results of a species comparison. Vincenzi FF Prog Clin Biol Res; 1981; 55():363-83. PubMed ID: 6117080 [TBL] [Abstract][Full Text] [Related]
17. Erythrocyte membrane ATPase activity of G6PD-deficient individuals and the effect of primaquine metabolite(s) on membrane ATPase enzymes. Akoğlu T; Ozdoğu H; Erdoğan R; Ozer FL J Trop Med Hyg; 1984 Oct; 87(5):219-24. PubMed ID: 6152296 [TBL] [Abstract][Full Text] [Related]
18. Effect of dietary fats on erythrocyte membrane lipid composition and membrane-bound enzyme activities. Vajreswari A; Narayanareddy K Metabolism; 1992 Apr; 41(4):352-8. PubMed ID: 1313527 [TBL] [Abstract][Full Text] [Related]
19. Functional consequences of the membrane pool of ATP associated with the human red blood cell Na/K pump. Proverbio F; Shoemaker DG; Hoffman JF Prog Clin Biol Res; 1988; 268A():561-7. PubMed ID: 2843902 [No Abstract] [Full Text] [Related]
20. Transport ATPases in the erythrocytes of rats acclimatized to intermittent altitude hypoxia. Kazennov AM; Procházka J; Pelouch V; Ostádal B; Maslova NM Physiol Bohemoslov; 1986; 35(5):406-13. PubMed ID: 3025901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]