BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2170091)

  • 1. [The role of proteins of membrane skeleton of non-nucleated erythrocytes in the functioning of membrane enzymes].
    Kazennov AM; Maslova MN; Shalabodov AD
    Dokl Akad Nauk SSSR; 1990; 312(1):223-6. PubMed ID: 2170091
    [No Abstract]   [Full Text] [Related]  

  • 2. [The activity of transport ATPases and the characteristics of the protein-lipid composition of the membranes of anuclear erythrocytes in a number of mammals].
    Matskevich IuA; Kazennov AM; Maslova MN
    Zh Evol Biokhim Fiziol; 1994; 30(4):497-504. PubMed ID: 7863741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A comparative study of the intracellular regulation of transport ATPase activity in non-nucleated erythrocytes].
    Matskevich IuA; Kazennov AM; Shalabodov AD
    Zh Evol Biokhim Fiziol; 1994; 30(5):690-7. PubMed ID: 8721313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity of Na-K-ATPase and Ca-Mg-ATPase in red blood cell membranes of lead-depleted rats.
    Eder K; Reichlmayr-Lais AM; Kirchgessner M
    J Trace Elem Electrolytes Health Dis; 1990 Mar; 4(1):21-4. PubMed ID: 1967007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of membrane-associated enzymes in regulation of erythrocyte shape and deformability.
    Mohandas N; Shohet SB
    Clin Haematol; 1981 Feb; 10(1):223-37. PubMed ID: 6260407
    [No Abstract]   [Full Text] [Related]  

  • 6. ATPase and acetylcholinesterase activities in erythrocyte membranes after incubation with glucose and in streptozotocin diabetic rats.
    Henschel S; Henschel L; Lober M; Krantz S
    Exp Clin Endocrinol; 1988 Mar; 91(1):20-6. PubMed ID: 2836222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whether or not divalent cation dependent ATPase activities associated with erythrocyte EDTA-membrane fragments may utilize free ATP4- or MG-ATP2- complex.
    Scutari G; Ballestrin G
    Boll Soc Ital Biol Sper; 1982 Apr; 58(8):437-43. PubMed ID: 6124262
    [No Abstract]   [Full Text] [Related]  

  • 8. [The effect of hemolysate and calcium ions on transport ATPase activity in guinea pig erythrocytes].
    Matskevich IuA; Kazennov AM
    Zh Evol Biokhim Fiziol; 1994; 30(6):738-45. PubMed ID: 8721317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. R 24571: a new powerful inhibitor of red blood cell Ca++-transport ATPase and of calmodulin-regulated functions.
    Gietzen K; Wüthrich A; Bader H
    Biochem Biophys Res Commun; 1981 Jul; 101(2):418-25. PubMed ID: 6272758
    [No Abstract]   [Full Text] [Related]  

  • 10. [Changes in acetylcholinesterase and ATPase activity and certain structural features of the erythrocyte membrane in experimental myocardial ischemia].
    Chernukh AM; Kopteva LA; Shevchenko AS
    Biull Eksp Biol Med; 1980 Sep; 90(9):270-2. PubMed ID: 6252988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Variations in ATPase activities of erythrocytic membrane and endocytic ionic levels in cases with pregnancy induced hypertension].
    Dai LT; Chou SH
    Zhonghua Fu Chan Ke Za Zhi; 1994 Jul; 29(7):411-3, 445. PubMed ID: 8001418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A protein inhibitor of erythrocyte membrane (Ca2+ + Mg2+)-ATPase.
    Lee KS; Au KS
    Biochim Biophys Acta; 1983 Jan; 742(1):54-62. PubMed ID: 6130792
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of ouabain on ATPase activities in human erythrocyte membranes.
    Li JC; Hinds TR; Vincenzi FF
    Proc West Pharmacol Soc; 1990; 33():143-8. PubMed ID: 2177192
    [No Abstract]   [Full Text] [Related]  

  • 14. [Effects of furyl-dihydropyridines I on lipid peroxides of ischemic myocardium and ATPases activity of erythrocyte membranes in rats].
    Liu DQ; Pang ZQ; Zhao DH; Sheng BH
    Zhongguo Yao Li Xue Bao; 1991 May; 12(3):253-6. PubMed ID: 1664169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The enzymes of the red blood cell plasma membrane.
    Delaunay J
    Biomedicine; 1977 Dec; 26(6):357-61. PubMed ID: 146525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red blood cell calmodulin and Ca2+ pump ATPase: preliminary results of a species comparison.
    Vincenzi FF
    Prog Clin Biol Res; 1981; 55():363-83. PubMed ID: 6117080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erythrocyte membrane ATPase activity of G6PD-deficient individuals and the effect of primaquine metabolite(s) on membrane ATPase enzymes.
    Akoğlu T; Ozdoğu H; Erdoğan R; Ozer FL
    J Trop Med Hyg; 1984 Oct; 87(5):219-24. PubMed ID: 6152296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of dietary fats on erythrocyte membrane lipid composition and membrane-bound enzyme activities.
    Vajreswari A; Narayanareddy K
    Metabolism; 1992 Apr; 41(4):352-8. PubMed ID: 1313527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional consequences of the membrane pool of ATP associated with the human red blood cell Na/K pump.
    Proverbio F; Shoemaker DG; Hoffman JF
    Prog Clin Biol Res; 1988; 268A():561-7. PubMed ID: 2843902
    [No Abstract]   [Full Text] [Related]  

  • 20. Transport ATPases in the erythrocytes of rats acclimatized to intermittent altitude hypoxia.
    Kazennov AM; Procházka J; Pelouch V; Ostádal B; Maslova NM
    Physiol Bohemoslov; 1986; 35(5):406-13. PubMed ID: 3025901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.