BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 2170130)

  • 1. The formation of protein complexes between ferricytochrome b5 and ferricytochrome c studied using high-resolution 1H-NMR spectroscopy.
    Whitford D; Concar DW; Veitch NC; Williams RJ
    Eur J Biochem; 1990 Sep; 192(3):715-21. PubMed ID: 2170130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 13C NMR spectroscopic and X-ray crystallographic study of the role played by mitochondrial cytochrome b5 heme propionates in the electrostatic binding to cytochrome c.
    Rodríguez-Marañón MJ; Qiu F; Stark RE; White SP; Zhang X; Foundling SI; Rodríguez V; Schilling CL; Bunce RA; Rivera M
    Biochemistry; 1996 Dec; 35(50):16378-90. PubMed ID: 8973214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The identification of cation-binding domains on the surface of microsomal cytochrome b5 using 1H-NMR paramagnetic difference spectroscopy.
    Whitford D
    Eur J Biochem; 1992 Jan; 203(1-2):211-23. PubMed ID: 1730227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The expression of bovine microsomal cytochrome b5 in Escherichia coli and a study of the solution structure and stability of variant proteins.
    Hewson R; Newbold RJ; Whitford D
    Protein Eng; 1993 Nov; 6(8):953-64. PubMed ID: 8309945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The solution structure of bovine ferricytochrome b5 determined using heteronuclear NMR methods.
    Muskett FW; Kelly GP; Whitford D
    J Mol Biol; 1996 Apr; 258(1):172-89. PubMed ID: 8613986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudocontact shifts used in the restraint of the solution structures of electron transfer complexes.
    Guiles RD; Sarma S; DiGate RJ; Banville D; Basus VJ; Kuntz ID; Waskell L
    Nat Struct Biol; 1996 Apr; 3(4):333-9. PubMed ID: 8599759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser flash photolysis studies of electron transfer to the cytochrome b5-cytochrome c complex.
    Meyer TE; Rivera M; Walker FA; Mauk MR; Mauk AG; Cusanovich MA; Tollin G
    Biochemistry; 1993 Jan; 32(2):622-7. PubMed ID: 8380703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the paramagnetic shifts of haem carbon resonances in bovine ferricytochrome b5.
    Pierattelli R; Turner DL
    Eur Biophys J; 1996; 24(5):342-7. PubMed ID: 8766692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton-NMR studies of the effects of ionic strength and pH on the hyperfine-shifted resonances and phenylalanine-82 environment of three species of mitochondrial ferricytochrome c.
    Moench SJ; Shi TM; Satterlee JD
    Eur J Biochem; 1991 May; 197(3):631-41. PubMed ID: 1851480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N epsilon,N epsilon-dimethyl-lysine cytochrome c as an NMR probe for lysine involvement in protein-protein complex formation.
    Moore GR; Cox MC; Crowe D; Osborne MJ; Rosell FI; Bujons J; Barker PD; Mauk MR; Mauk AG
    Biochem J; 1998 Jun; 332 ( Pt 2)(Pt 2):439-49. PubMed ID: 9601073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assignment of hyperfine-shifted heme carbon resonances in ferricytochrome b5.
    Lee KB; Kweon J; Park H
    FEBS Lett; 1995 Jun; 367(1):77-80. PubMed ID: 7601289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The orientations of cytochrome c in the highly dynamic complex with cytochrome b5 visualized by NMR and docking using HADDOCK.
    Volkov AN; Ferrari D; Worrall JA; Bonvin AM; Ubbink M
    Protein Sci; 2005 Mar; 14(3):799-811. PubMed ID: 15689516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One- and two-dimensional nuclear Overhauser effect studies of the electronic/molecular structure of the heme cavity of ferricytochrome b5.
    McLachlan SJ; La Mar GN; Lee KB
    Biochim Biophys Acta; 1988 Dec; 957(3):430-45. PubMed ID: 3196721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR study of the interaction between cytochrome b5 and cytochrome c. Observation of a ternary complex formed by the two proteins and [Cr(en)3]3+.
    Hartshorn RT; Mauk AG; Mauk MR; Moore GR
    FEBS Lett; 1987 Mar; 213(2):391-5. PubMed ID: 3030818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR studies of the association of cytochrome b5 with cytochrome c.
    Hom K; Ma QF; Wolfe G; Zhang H; Storch EM; Daggett V; Basus VJ; Waskell L
    Biochemistry; 2000 Nov; 39(46):14025-39. PubMed ID: 11087350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crosslinking of cytochrome c and cytochrome b5 with a water-soluble carbodiimide. Reaction conditions, product analysis and critique of the technique.
    Mauk MR; Mauk AG
    Eur J Biochem; 1989 Dec; 186(3):473-86. PubMed ID: 2558010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, interaction and electron transfer between cytochrome b5, its E44A and/or E56A mutants and cytochrome c.
    Sun YL; Wang YH; Yan MM; Sun BY; Xie Y; Huang ZX; Jiang SK; Wu HM
    J Mol Biol; 1999 Jan; 285(1):347-59. PubMed ID: 9878411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of backbone dynamics in cytochrome b5 using 15N-NMR relaxation measurements.
    Kelly GP; Muskett FW; Whitford D
    Eur J Biochem; 1997 Apr; 245(2):349-54. PubMed ID: 9151963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical measurement of second-order electron transfer rate constants for the reaction between cytochrome b5 and cytochrome c.
    Seetharaman R; White SP; Rivera M
    Biochemistry; 1996 Sep; 35(38):12455-63. PubMed ID: 8823180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the internal hydrogen bond network in first-order protein electron transfer between Saccharomyces cerevisiae iso-1-cytochrome c and bovine microsomal cytochrome b5.
    Whitford D; Gao Y; Pielak GJ; Williams RJ; McLendon GL; Sherman F
    Eur J Biochem; 1991 Sep; 200(2):359-67. PubMed ID: 1653702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.