These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21701741)

  • 1. Structural design and facile synthesis of a highly efficient catalyst for formic acid electrooxidation.
    Wang XM; Wang ME; Zhou DD; Xia YY
    Phys Chem Chem Phys; 2011 Aug; 13(30):13594-7. PubMed ID: 21701741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of octahedral Pt-Pd alloy nanoparticles for improved catalytic activity and stability in methanol electrooxidation.
    Lee YW; Ko AR; Han SB; Kim HS; Park KW
    Phys Chem Chem Phys; 2011 Apr; 13(13):5569-72. PubMed ID: 21327266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction.
    Wang D; Xin HL; Yu Y; Wang H; Rus E; Muller DA; Abruña HD
    J Am Chem Soc; 2010 Dec; 132(50):17664-6. PubMed ID: 21105661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction.
    Zhang H; Jin M; Wang J; Li W; Camargo PH; Kim MJ; Yang D; Xie Z; Xia Y
    J Am Chem Soc; 2011 Apr; 133(15):6078-89. PubMed ID: 21438596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the origin of reactive Pd catalysts for an electrooxidation of formic acid.
    Jeon H; Uhm S; Jeong B; Lee J
    Phys Chem Chem Phys; 2011 Apr; 13(13):6192-6. PubMed ID: 21359275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of hollow and nanoporous gold/platinum alloy nanoparticles and their electrocatalytic activity for formic acid oxidation.
    Lee D; Jang HY; Hong S; Park S
    J Colloid Interface Sci; 2012 Dec; 388(1):74-9. PubMed ID: 22964092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Platinum-decorated Au porous nanotubes as highly efficient catalysts for formic acid electro-oxidation.
    Gu X; Cong X; Ding Y
    Chemphyschem; 2010 Mar; 11(4):841-6. PubMed ID: 20166117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designed synthesis of well-defined Pd@Pt core-shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts.
    Choi R; Choi SI; Choi CH; Nam KM; Woo SI; Park JT; Han SW
    Chemistry; 2013 Jun; 19(25):8190-8. PubMed ID: 23613263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation.
    Mazumder V; Sun S
    J Am Chem Soc; 2009 Apr; 131(13):4588-9. PubMed ID: 19281236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Synthesis of a Porous Pd/Cu Alloy and its Enhanced Performance toward Methanol and Formic Acid Electrooxidation.
    Yan B; Wang C; Xu H; Zhang K; Li S; Du Y
    Chempluschem; 2017 Aug; 82(8):1121-1128. PubMed ID: 31957330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions.
    Tao F; Grass ME; Zhang Y; Butcher DR; Aksoy F; Aloni S; Altoe V; Alayoglu S; Renzas JR; Tsung CK; Zhu Z; Liu Z; Salmeron M; Somorjai GA
    J Am Chem Soc; 2010 Jun; 132(25):8697-703. PubMed ID: 20521788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles.
    López-Cudero A; Vidal-Iglesias FJ; Solla-Gullón J; Herrero E; Aldaz A; Feliu JM
    Phys Chem Chem Phys; 2009 Jan; 11(2):416-24. PubMed ID: 19088999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis of a platinum-lead oxide nanocomposite catalyst with high activity and durability for ethanol electrooxidation.
    Yang WH; Wang HH; Chen DH; Zhou ZY; Sun SG
    Phys Chem Chem Phys; 2012 Dec; 14(47):16424-32. PubMed ID: 23133838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pd-Co-Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells.
    Raghuveer V; Manthiram A; Bard AJ
    J Phys Chem B; 2005 Dec; 109(48):22909-12. PubMed ID: 16853984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed-phase PdRu bimetallic structures with high activity and stability for formic acid electrooxidation.
    Wu D; Zheng Z; Gao S; Cao M; Cao R
    Phys Chem Chem Phys; 2012 Jun; 14(22):8051-7. PubMed ID: 22555145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile one-pot synthesis and enhanced formic acid oxidation of monodisperse Pd-Cu nanocatalysts.
    Park KH; Lee YW; Kang SW; Han SW
    Chem Asian J; 2011 Jun; 6(6):1515-9. PubMed ID: 21509940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TiO
    Pisarek M; Kędzierzawski P; Andrzejczuk M; Hołdyński M; Mikołajczuk-Zychora A; Borodziński A; Janik-Czachor M
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32155943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic voltammetry, FTIRS, and DEMS study of the electrooxidation of carbon monoxide, formic acid, and methanol on cyanide-modified Pt(111) electrodes.
    Cuesta A; Escudero M; Lanova B; Baltruschat H
    Langmuir; 2009 Jun; 25(11):6500-7. PubMed ID: 19466794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ surface-enhanced Raman spectroscopic study of formic acid electrooxidation on spontaneously deposited platinum on gold.
    Muralidharan R; McIntosh M; Li X
    Phys Chem Chem Phys; 2013 Jun; 15(24):9716-25. PubMed ID: 23674096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Butylphenyl-functionalized palladium nanoparticles as effective catalysts for the electrooxidation of formic acid.
    Zhou ZY; Kang X; Song Y; Chen S
    Chem Commun (Camb); 2011 Jun; 47(21):6075-7. PubMed ID: 21519615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.