BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21701878)

  • 1. Role of CAMKII in reinforcement learning: a computational model of glutamate and dopamine signaling pathways.
    Wanjerkhede SM; Bapi RS
    Biol Cybern; 2011 Jun; 104(6):397-424. PubMed ID: 21701878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the sub-cellular signaling pathways involved in reinforcement learning at the striatum.
    Wanjerkhede SM; Bapi RS
    Prog Brain Res; 2008; 168():193-206. PubMed ID: 18166396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signaling models for dopamine-dependent temporal contiguity in striatal synaptic plasticity.
    Urakubo H; Yagishita S; Kasai H; Ishii S
    PLoS Comput Biol; 2020 Jul; 16(7):e1008078. PubMed ID: 32701987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postsynaptic integration of glutamatergic and dopaminergic signals in the striatum.
    Kötter R
    Prog Neurobiol; 1994 Oct; 44(2):163-96. PubMed ID: 7831476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased CaMKII and PKC activities in specific brain regions are associated with cognitive impairment in neonatal ventral hippocampus-lesioned rats.
    Yabuki Y; Nakagawasai O; Moriguchi S; Shioda N; Onogi H; Tan-No K; Tadano T; Fukunaga K
    Neuroscience; 2013 Mar; 234():103-15. PubMed ID: 23313709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The glutamate hypothesis of reinforcement learning.
    Pennartz CM; McNaughton BL; Mulder AB
    Prog Brain Res; 2000; 126():231-53. PubMed ID: 11105650
    [No Abstract]   [Full Text] [Related]  

  • 7. NR2A-containing NMDA receptors depress glutamatergic synaptic transmission and evoked-dopamine release in the mouse striatum.
    Schotanus SM; Chergui K
    J Neurochem; 2008 Aug; 106(4):1758-65. PubMed ID: 18540994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson's disease patients: evidence from a model-based fMRI study.
    Schonberg T; O'Doherty JP; Joel D; Inzelberg R; Segev Y; Daw ND
    Neuroimage; 2010 Jan; 49(1):772-81. PubMed ID: 19682583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent finding on dopaminergic transmission in the basal ganglia.
    Glowinski J
    Adv Neurol; 1990; 53():67-73. PubMed ID: 2173377
    [No Abstract]   [Full Text] [Related]  

  • 10. Characterization of CaMKII-expressing neurons within a striatal region implicated in avian vocal learning.
    Hein AM; Sridharan A; Nordeen KW; Nordeen EJ
    Brain Res; 2007 Jun; 1155():125-33. PubMed ID: 17493595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats.
    Haberny SL; Carr KD
    Neuroscience; 2005; 132(4):1035-43. PubMed ID: 15857708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signaling in striatal neurons: the phosphoproteins of reward, addiction, and dyskinesia.
    Girault JA
    Prog Mol Biol Transl Sci; 2012; 106():33-62. PubMed ID: 22340713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix.
    Wickens JR; Budd CS; Hyland BI; Arbuthnott GW
    Ann N Y Acad Sci; 2007 May; 1104():192-212. PubMed ID: 17416920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling functions of striatal dopamine modulation in learning and planning.
    Suri RE; Bargas J; Arbib MA
    Neuroscience; 2001; 103(1):65-85. PubMed ID: 11311788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetics of childhood disorders: LIII. Learning and memory, part 6: induction of long-term potentiation.
    Blitzer R; Lombroso PJ
    J Am Acad Child Adolesc Psychiatry; 2003 Aug; 42(8):998-1001. PubMed ID: 12874504
    [No Abstract]   [Full Text] [Related]  

  • 16. Neural control of dopamine neurotransmission: implications for reinforcement learning.
    Aggarwal M; Hyland BI; Wickens JR
    Eur J Neurosci; 2012 Apr; 35(7):1115-23. PubMed ID: 22487041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic interactions of dopamine D1 and glutamate NMDA receptors in rat hippocampus and prefrontal cortex: involvement of ERK1/2 signaling.
    Sarantis K; Matsokis N; Angelatou F
    Neuroscience; 2009 Nov; 163(4):1135-45. PubMed ID: 19647050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can the apparent adaptation of dopamine neurons' mismatch sensitivities be reconciled with their computation of reward prediction errors?
    Tan CO; Anderson E; Dranias M; Bullock D
    Neurosci Lett; 2008 Jun; 438(1):14-6. PubMed ID: 18482798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Recent discoveries on the function and plasticity of central dopamine pathways].
    Thibault D; Kortleven C; Fasano C; Dal Bo G; Trudeau LE
    Med Sci (Paris); 2010 Feb; 26(2):165-70. PubMed ID: 20188048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Where do you think you are going? The NMDA-D1 receptor trap.
    Cepeda C; Levine MS
    Sci STKE; 2006 May; 2006(333):pe20. PubMed ID: 16670371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.