BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21701904)

  • 1. RNA editing restores critical domains of a group I intron in fern mitochondria.
    Bégu D; Castandet B; Araya A
    Curr Genet; 2011 Oct; 57(5):317-25. PubMed ID: 21701904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The horsetail Equisetum arvense mitochondria share two group I introns with the liverwort Marchantia, acquired a novel group II intron but lost intron-encoded ORFs.
    Bégu D; Araya A
    Curr Genet; 2009 Feb; 55(1):69-79. PubMed ID: 19112563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants.
    Groth-Malonek M; Pruchner D; Grewe F; Knoop V
    Mol Biol Evol; 2005 Jan; 22(1):117-25. PubMed ID: 15356283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable frequency of plastid RNA editing among ferns and repeated loss of uridine-to-cytidine editing from vascular plants.
    Guo W; Grewe F; Mower JP
    PLoS One; 2015; 10(1):e0117075. PubMed ID: 25568947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA editing in mitochondrial trans-introns is required for splicing.
    Farré JC; Aknin C; Araya A; Castandet B
    PLoS One; 2012; 7(12):e52644. PubMed ID: 23285127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort.
    Malek O; Knoop V
    RNA; 1998 Dec; 4(12):1599-609. PubMed ID: 9848656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intron RNA editing is essential for splicing in plant mitochondria.
    Castandet B; Choury D; Bégu D; Jordana X; Araya A
    Nucleic Acids Res; 2010 Nov; 38(20):7112-21. PubMed ID: 20615898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse U-to-C editing exceeds C-to-U RNA editing in some ferns - a monilophyte-wide comparison of chloroplast and mitochondrial RNA editing suggests independent evolution of the two processes in both organelles.
    Knie N; Grewe F; Fischer S; Knoop V
    BMC Evol Biol; 2016 Jun; 16(1):134. PubMed ID: 27329857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unique transcriptome: 1782 positions of RNA editing alter 1406 codon identities in mitochondrial mRNAs of the lycophyte Isoetes engelmannii.
    Grewe F; Herres S; Viehöver P; Polsakiewicz M; Weisshaar B; Knoop V
    Nucleic Acids Res; 2011 Apr; 39(7):2890-902. PubMed ID: 21138958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Editing status of mat-r transcripts in mitochondria from two plant species: C-to-U changes occur in putative functional RT and maturase domains.
    Bégu D; Mercado A; Farré JC; Moenne A; Holuigue L; Araya A; Jordana X
    Curr Genet; 1998 Jun; 33(6):420-8. PubMed ID: 9644205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA editing status of nad7 intron domains in wheat mitochondria.
    Carrillo C; Bonen L
    Nucleic Acids Res; 1997 Jan; 25(2):403-9. PubMed ID: 9016571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core.
    Myers CA; Wallweber GJ; Rennard R; Kemel Y; Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Sep; 262(2):87-104. PubMed ID: 8831782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete mitochondrial genomes from the ferns Ophioglossum californicum and Psilotum nudum are highly repetitive with the largest organellar introns.
    Guo W; Zhu A; Fan W; Mower JP
    New Phytol; 2017 Jan; 213(1):391-403. PubMed ID: 27539928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA editing of a group II intron in Oenothera as a prerequisite for splicing.
    Börner GV; Mörl M; Wissinger B; Brennicke A; Schmelzer C
    Mol Gen Genet; 1995 Mar; 246(6):739-44. PubMed ID: 7898443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential RNA editing in closely related introns in Oenothera mitochondria.
    Lippok B; Brennicke A; Wissinger B
    Mol Gen Genet; 1994 Apr; 243(1):39-46. PubMed ID: 7514712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of trans-splicing plant mitochondrial introns in pre-Permian times.
    Malek O; Brennicke A; Knoop V
    Proc Natl Acad Sci U S A; 1997 Jan; 94(2):553-8. PubMed ID: 9012822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cordyceps militaris (Hypocreales: Cordycipitaceae): transcriptional analysis and molecular characterization of cox1 and group I intron with putative LAGLIDADG endonuclease.
    Zheng Z; Jiang K; Huang C; Mei C; Han R
    World J Microbiol Biotechnol; 2012 Jan; 28(1):371-80. PubMed ID: 22806813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel group-II intron in the cox1 gene of the fission yeast Schizosaccharomyces pombe is inserted in the same codon as the mobile group-II intron aI2 in the Saccharomyces cerevisiae cox1 homologue.
    Schäfer B; Wolf K
    Curr Genet; 1999 Jul; 35(6):602-8. PubMed ID: 10467004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergent Evolution of Fern-Specific Mitochondrial Group II Intron atp1i361g2 and Its Ancient Source Paralogue rps3i249g2 and Independent Losses of Intron and RNA Editing among Pteridaceae.
    Zumkeller SM; Knoop V; Knie N
    Genome Biol Evol; 2016 Aug; 8(8):2505-19. PubMed ID: 27492234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA editing of mat-r transcripts in maize and soybean increases similarity of the encoded protein to fungal and bryophyte group II intron maturases: evidence that mat-r encodes a functional protein.
    Thomson MC; Macfarlane JL; Beagley CT; Wolstenholme DR
    Nucleic Acids Res; 1994 Dec; 22(25):5745-52. PubMed ID: 7838731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.